The ratio of alkali modulus in strength development of class c fly ash geopolymer mortar

2021 ◽  
Author(s):  
Arie Wardhono ◽  
Bambang Sabariman ◽  
M. Imaduddin ◽  
M. Firmansyah Sofianto ◽  
Ninik W. Hidajati ◽  
...  
Keyword(s):  
Fly Ash ◽  
2017 ◽  
Vol 744 ◽  
pp. 131-135 ◽  
Author(s):  
Muhammad Zahid ◽  
Nasir Shafiq ◽  
Mohd Fadhil Nuruddin ◽  
Ehsan Nikbakht ◽  
Asif Jalal

This article aims to investigate the compressive strength variation by the addition of metakaolin as a substitute of fly ash in the fly ash based geopolymer mortar. Five, ten and fifteen percent by weight of fly ash was replaced by highly reactive metakaolin. Two type of fly ashes namely, ASTM class F and ASTM class C were used as a base material for the synthesis of geopolymer mortar. Eight molar sodium hydroxide solution mixed with sodium silicate solution was used as alkaline activator. For optimum geopolymerization, mortar was cured at sixty degree Celsius for twenty four hours duration. Results show different behavior of metakaolin replacement on compressive strength for two different types of fly ash based geopolymer mortar. Improvement in compressive strength was seen by addition of metakaolin in ASTM class F fly ash based geopolymer. On the other hand compressive strength was decreased abruptly in fly ash class C based geopolymer up to certain replacement level.


2012 ◽  
Vol 2 (3) ◽  
pp. 102-104 ◽  
Author(s):  
Suthar Sunil B ◽  
◽  
Dr. (Smt.) B. K. Shah Dr. (Smt.) B. K. Shah

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1015 ◽  
Author(s):  
Emy Aizat Azimi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Petrica Vizureanu ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
...  

A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.


1989 ◽  
Vol 178 ◽  
Author(s):  
Kirsten G. Jeppesen

AbstractSpray dried absorption products (SDA) having special characteristics are used as substitutes for cement in the preparation of mortars; the qualities of the resulting mixed mortars are described. Conditions are described for mortar mixes, data for which were presented at the MRS Fall Meeting 1987.The influence of the composition of the SDA on water requirement and setting time has been studied. A full scale project involving 3 precast, reinforced concrete front-elements containing 20 and 30 wt.% SDA is described. Strength development, mineralogical composition and corrosion were monitored for two years.A non-standard freeze-thaw experiment was performed which compares mortars containing SDA and fly ash (FA) and also shows the effect of superplasticizer.The possibility of improving the SDA by grinding has been tested and a limited improvement has been found. The strength of the mixed mortars seems slightly influenced by the grain size of SDAGypsum (CaSO4·2H2O), synthetic calcium-sulphite (CaSO3·½H2O) and 2 SDAs have been used as retarders for cement clinker. Mortar test prisms have been cast and comparative strengths after curing for 3 years are reported


2008 ◽  
Vol 35 (4) ◽  
pp. 349-357 ◽  
Author(s):  
İlker Bekir Topçu ◽  
Mehmet Uğur Toprak ◽  
Devrim Akdağ

Microwave energy can accelerate the hydration of cement, which results in the rapid strength development of concrete. In this paper, prediction of later age compressive strength of fly ash cement mortars, based on the accelerated strength of mortars cured with microwave energy, was investigated. To accelerate curing properly, optimal processing parameters of microwave curing (MC) on Portland cement mortars (CM) and fly ash cement mortars (FA) were first determined and then were applied to mortars. The possible early ages for the strength prediction were found to be at 6 and 8 h for CM and FA, respectively. The error percentages for prediction of CM were ±2.22% and 2.91% for 7 and 28 d, respectively. Error percentages for FA, on the other hand, were ±4.36% and 5.20% for 7 and 28 d, respectively.


Sign in / Sign up

Export Citation Format

Share Document