Considerations for traffic loads in the assessment of existing railway bridges

Bauingenieur ◽  
2016 ◽  
Vol 91 (10) ◽  
pp. 410-416
Author(s):  
Gerhard Lener ◽  
Johannes Schmid

Sowohl bei der ursprünglichen Dimensionierung als auch bei allfälligen Sanierungsvorhaben bedingen die Einwirkungen aus Verkehrslasten die Bauteilabmessungen maßgeblich. In vielen Fällen sind ältere Tragwerke nach heutigen Bemessungsrichtlinien deutlich unterdimensioniert, wodurch im Falle von Erweiterungsmaßnahmen zusätzliche Verstärkungsmaßnahmen im Bestand anfallen. Des Weiteren ist die Beurteilung der Restlebensdauer solcher Tragwerke in der Praxis schwierig, da in der Regel keine Informationen hinsichtlich der realen Einwirkungen aus Verkehrslasten vorhanden sind. Durch diesen unbefriedigenden Zustand motiviert, erfolgt in diesem Beitrag eine nähere Untersuchung realer, messtechnisch erfasster Einwirkungen auf Eisenbahnbrücken. Diese bilden die Basis für Vergleiche der Auswirkungen realer Messdaten und normativen Lastmodellen, die rechnerisch an unterschiedlichen Tragsystemen gezeigt werden. Dabei sind die im Vergleich zu den genormten Belastungen doch maßgeblich geringeren Einwirkungen deutlich erkennbar und liefern damit möglicherweise die Antwort auf die Frage, warum einzelne Eisenbahnbrücken nach wie vor funktionieren, obwohl deren rechnerische Lebensdauer bereits erreicht ist. Des Weiteren zeigt sich das daraus resultierende Optimierungspotenzial bei der Aktivierung von Realtragreserven beziehungsweise der deutlich höherer anzusetzender Lebenserwartung bestehender Tragwerke.


2015 ◽  
Vol 22 (4) ◽  
pp. 457-469 ◽  
Author(s):  
Helder SOUSA ◽  
Bruno J. A. COSTA ◽  
António Abel HENRIQUES ◽  
João BENTO ◽  
Joaquim A. FIGUEIRAS

Several technical and scientific publications have been made available focussing on Bridge Weight-in-Motion (BWIM) concerning railway bridges. On the contrary, BWIM analysis on road bridges are more scarce and therefore, this work intends to provide a contribution by presenting the BWIM analysis performed on two major road bridges in Portugal – Lezíria Bridge and Pinhão Bridge. These bridges are equipped with electric and optical strain gauges, acquisi­tion systems with features that allow high sampling rates. Based on the collected data and focussing on the bridges’ life­time, a probabilistic approach to quantify extreme traffic loads was implemented using extreme distribution functions. The bridges’ behaviour to these extreme traffic loads is numerically evaluated and a comparison with the alarm levels established by the bridge designers is performed. Although the bridge’s safety is not compromised, it was concluded that the representativeness of the observation period is a critical issue and the analysis of this kind of results must be care­fully considered. A comprehensive discussion about this matter is carried out at the end of this work.


2004 ◽  
Vol 10 (2) ◽  
pp. 143-150
Author(s):  
Yannick Sieffert ◽  
Gérard Michel ◽  
Didier Martin ◽  
David Keller ◽  
Jean-François Jullien

This study focuses on mechanical behaviour of diaphragm in composite multigirders railway bridge. The aim is to predict and to compare, with a numerical simulation, the transverse and longitudinal distribution of traffic loads in different girders and in the slab for the cases with and without intermediary diaphragm. A 3‐D finite element model is developed to represent the actual geometry of multigirder bridge. Durability of the concrete bridge deck is directly related to cracking, so a non‐linear constitutive equation is used for the concrete deck. This study focuses on the response of a bridge with and without dipahragm under a UIC and TGV loading. To achieve this aim, a static failure analysis is performed. Our analysis concluded that diaphragm is not necessary, so it seems to be possible to remove the diaphragms.


Author(s):  
Ulrike Kuhlmann ◽  
Simon Bove ◽  
Stephanie Breunig ◽  
Karl Drebenstedt

Highway and railway bridges are exposed to cyclic stressing due to traffic loads and, therefore, have to be evaluated concerning fatigue. In most cases the fatigue evaluation is performed according to Eurocode 3 Part 1-9 on nominal stresses. To apply this nominal stress approach a detail catalogue is required classifying all relevant constructional details in terms of fatigue. Unfortunately, the existing detail catalogue of Eurocode 3 Part 1-9 reflects the state of the art of the 1990s and misses constructional details being important for today’s bridge design. As an example the derivation of a new detail, the so-called lamellae joint, is presented. Furthermore, for two new types of innovative steel bridges, where Eurocode 3 Part 1-9 does not yet specify rules able to evaluate the characteristics of these bridges, research results are shown. These are the thick-plate trough bridges and truss bridges made of thick-walled circular hollow sections (CHS). The paper starts with an overview on the recent Eurocode developments, addressing more specific the fatigue verification according to EN 1993-1-9 and the statistical analysis of fatigue test data. In the following, information is given on the outcome of some recent research projects striving to extend the application range of Eurocode 3 Part 1-9. The final conclusion, in spite of all differences, show a common tendency.  


2020 ◽  
Vol 14 (1) ◽  
pp. 47-58
Author(s):  
Dwi Agus Purnomo ◽  
Djoko Prijo Utomo ◽  
Agung Barokah Waseso ◽  
Mira Marindaa

The railway bridge in Indonesia, with a width of 1067 mm, was built in 1878, so that maintenance modules are needed to repair or to replace of construction modul at regular intervals. Implementation of maintenance and repairs refers to the Minister of Transportation Regulation No. 60 of 2012. Problems were encountered in the field at the BH182 Daop 2 railway bridge in Bandung due to lowering structural strength. Therefore, it was necessary to repair the bridge module with a new bridge design. The purpose of this study is to analyse and to calculate strength of the structure and to determine effectiveness of the use of construction materials on 2 alternative bridge construction selection with the type of “I" girder and the type of “Warren" Truss. Design implementation method used is to utilize Midas Civil Structure software. The loading used for railway bridges is grouped into three load groups, namely the girder's self-weight, additional dead load, and live load. Additional dead load analysed is line load including bearings, while for live load is trainset load based on loading requirements. From the results of calculations between the steel bridge “I" girder type height of 300 cm and the type of “Warren" Truss height of 600 cm, each span of 30 m showed that those were a function of the railway bridge. It would be more effective to use the type of “Warren” Truss structure that is quite able to withstand train traffic loads in accordance with applicable standards.


Sign in / Sign up

Export Citation Format

Share Document