scholarly journals COMPARISON ANALYSIS OF RAILWAY BRIDGE MODUL FOR “I” GIRDER TYPE AND “WARREN” TRUSS TYPE

2020 ◽  
Vol 14 (1) ◽  
pp. 47-58
Author(s):  
Dwi Agus Purnomo ◽  
Djoko Prijo Utomo ◽  
Agung Barokah Waseso ◽  
Mira Marindaa

The railway bridge in Indonesia, with a width of 1067 mm, was built in 1878, so that maintenance modules are needed to repair or to replace of construction modul at regular intervals. Implementation of maintenance and repairs refers to the Minister of Transportation Regulation No. 60 of 2012. Problems were encountered in the field at the BH182 Daop 2 railway bridge in Bandung due to lowering structural strength. Therefore, it was necessary to repair the bridge module with a new bridge design. The purpose of this study is to analyse and to calculate strength of the structure and to determine effectiveness of the use of construction materials on 2 alternative bridge construction selection with the type of “I" girder and the type of “Warren" Truss. Design implementation method used is to utilize Midas Civil Structure software. The loading used for railway bridges is grouped into three load groups, namely the girder's self-weight, additional dead load, and live load. Additional dead load analysed is line load including bearings, while for live load is trainset load based on loading requirements. From the results of calculations between the steel bridge “I" girder type height of 300 cm and the type of “Warren" Truss height of 600 cm, each span of 30 m showed that those were a function of the railway bridge. It would be more effective to use the type of “Warren” Truss structure that is quite able to withstand train traffic loads in accordance with applicable standards.

Author(s):  
Irpan Hidayat

The bridge is a means of connecting roads which is disconnected by barriers of the river, valley, sea, road or railway. Classified by functionality, bridges can be divided into highway bridge and railroad bridge. This study discusses whether the use of I-girder with 210 m height can be used on highway bridges and railway bridges. A comparison is done on the analysis of bridge structure calculation of 50 m spans and loads used in both the function of the bridge. For highway bridge, loads are grouped into three, which are self weight girder, additional dead load and live load. The additional dead loads for highway bridge are plate, deck slab, asphalt, and the diaphragm, while for the live load is load D which consists of a Uniform Distributed Load (UDL) and Knife Edge Load (KEL) based on "Pembebanan Untuk Jembatan RSNI T-02-2005". The load grouping for railway bridge equals to highway bridge. The analysis on the railway bridges does not use asphalt, and is replaced with a load of ballast on the track and the additional dead load. Live load on the structure of the railway bridge is the load based on Rencana Muatan 1921 (RM.1921). From the calculation of the I-girder bridge spans 50 m and girder height 210 cm for railway bridge, the stress on the lower beam is over the limit stress allowed. These results identified that the I-girder height 210 cm at the railway bridge has not been able to resist the loads on the railway bridge.


Author(s):  
Amir Sadeghnejad ◽  
Sheharyar Rehmat ◽  
Islam M. Mantawy ◽  
Atorod Azizinamini

A new superstructure to pier connection for simple for dead load and continuous for live load (SDCL) steel bridge system in seismic areas was developed. As proof of concept, component level and system level tests were carried out on scale models. The component test was conducted under cyclic loading and the results showed satisfactory performance conforming to design standards. The same detail was incorporated in a system level shake table testing which was subjected to bidirectional earthquake excitations. The results showed that the connection behaved well under high levels of drift and acceleration. The capacity protected elements sustained minimal damage and the plastic hinge was limited to a predefined location in the column. In this paper, a summary of results from both tests is presented and compared. The results showed that the SDCL components remained within the elastic range. It was concluded that the dowel bars in the cap beam are the main load-carrying elements under excitations in the longitudinal direction of the bridge and the provisions of current design codes are adequate for the design of these reinforcing bars. Both test protocols showed similar behavior despite the differences in construction methods and material properties.


2004 ◽  
Vol 10 (2) ◽  
pp. 143-150
Author(s):  
Yannick Sieffert ◽  
Gérard Michel ◽  
Didier Martin ◽  
David Keller ◽  
Jean-François Jullien

This study focuses on mechanical behaviour of diaphragm in composite multigirders railway bridge. The aim is to predict and to compare, with a numerical simulation, the transverse and longitudinal distribution of traffic loads in different girders and in the slab for the cases with and without intermediary diaphragm. A 3‐D finite element model is developed to represent the actual geometry of multigirder bridge. Durability of the concrete bridge deck is directly related to cracking, so a non‐linear constitutive equation is used for the concrete deck. This study focuses on the response of a bridge with and without dipahragm under a UIC and TGV loading. To achieve this aim, a static failure analysis is performed. Our analysis concluded that diaphragm is not necessary, so it seems to be possible to remove the diaphragms.


2011 ◽  
Vol 243-249 ◽  
pp. 1659-1663
Author(s):  
Yun Sheng Li ◽  
Yang Tian ◽  
Yan Ling Zhang

Orthotropic decks are commonly used in high-speed railway bridges. Finite-element model is established by ANSYS for orthotropic steel bridge deck in this paper. Taking the standard PDL ZK live load as the train load, the local stress of the rib-to-deck joint, the rib-to-crossbeam joint, and the cut-outs of the crossbeam are analyzed respectively. Analysis results show that the stress concentration of bridge deck mainly appears at the intersecting part of the U-shaped rib, crossbeam, and bridge deck. In the whole bridge deck, the local stress level of the cut-outs in crossbeam is almost the highest, and the cut-outs is distorted seriously; the maximum stress of crossbeam cut-outs is mainly concentrated at the lower arc of the cut-outs, which is one of the positions prone to fatigue failure.


2019 ◽  
Vol 284 ◽  
pp. 01005
Author(s):  
Mieczysław Piechota ◽  
Grzegorz Rogojsz

The paper presents an analysis of the technical condition of a railway bridge structure with a span structure in the form of welded girders. Static diagram of the structure consists of two simply supported beams. The theoretical span of the spans is 2 x 14.50 m, their overall length is 14.90 m, and the total length of the crossing is 30.6 m. The reasons for the formation and development of bridge degradation were analysed. In addition, the actual load capacity of the structure was determined and the possibility of its further operation was evaluated. Particular attention was given to the quality of workmanship and the degradation progress of welded joints, which led to the exclusion of the object from use. The main purpose of the presented analyses is to formulate general recommendations, whose implementation in a direct or indirect form may contribute to reducing the degradation process of railway steel bridge structures. When inspecting welded railway bridges, particular attention should be paid to the condition of welds and to control and prevent the structure from cracking.


2014 ◽  
Vol 587-589 ◽  
pp. 1416-1419
Author(s):  
Stefan I. Gutiu ◽  
Catalin Moga

This paper presents the fatigue checking methodology of the steel bridge members according to Romanian norm SR 1911-98 and EN 1993-1-9. A comparative analysis regarding the fatigue checking of the main girders of a 30 m span steel railway bridge is made. The concluding remarks and observations are useful in the design activity of this type of structures.


2018 ◽  
Vol 69 (6) ◽  
pp. 1352-1354
Author(s):  
Anamaria Feier ◽  
Oana Roxana Chivu

The problem of corrosion for old steel bridges in operation is often solved by direct replacement of elements or structure. Only a few studies have been done to determine the efforts influenced by corrosion in those elements. In general, it is considered that a corroded element has exceeded the bearing capacity and should be replaced, but if the corroded element is secondary it could be treated and kept. A factor in the rehabilitation of an old steel bridge in operation is the aspect of structure. If the structure is corroded, rehabilitation decision is taken is easier. Lamellar tearing describes the cracking that occurs beneath the weld and can be characterized as a brittle failure of steel, in the direction perpendicular to the plane of rolling. The paper presents a comprehensive study on lamellar tearing and summarizes some conclusions about the prevention of them. The conclusions will be exemplified in the case of a railway bridge, with a main truss girder. The paper presents also some observations regarding the stress analysis in fillet welds, resulting from the engineering practice.


2011 ◽  
Vol 71-78 ◽  
pp. 4501-4505
Author(s):  
Ming Chen ◽  
Wan Zhou

Although modern bridge are carefully designed and well constructed, damage may occur in them due to unexpected causes. Currently, many different techniques have been proposed and investigated in bridge condition assessment. However, evaluation efficiency of condition assessment has not been paid much attention by the researchers. A fast evaluation of the urban railway bridge condition based on the cloud computing is presented. In this paper dynamic FE model and Artificial neural networks technique is applied to model updating. The cloud computing model provides the basis for fast analyses. It was found that when applied to the actually railway bridges, the proposed method provided results similar to those obtained by experts, but can improve efficiency of bridge


Sign in / Sign up

Export Citation Format

Share Document