Preparation of high specific surface area activated carbon from coconut shell with KOH activation by microwave heating

Author(s):  
Shengzhou Zhang ◽  
Jian Wu ◽  
Hongying Xia ◽  
Libo Zhang ◽  
Jinhui Peng
2019 ◽  
Vol 199 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Wang-Quan Zhang ◽  
Xin Sui ◽  
Bing Yu ◽  
You-Qing Shen ◽  
Hai-Lin Cong

2015 ◽  
Vol 22 (6) ◽  
pp. 1527-1537 ◽  
Author(s):  
Song cheng ◽  
Libo Zhang ◽  
Hongying Xia ◽  
Jinhui Peng ◽  
Shengzhou Zhang ◽  
...  

2020 ◽  
Vol 49 (16) ◽  
pp. 5006-5014 ◽  
Author(s):  
Yuanyuan Li ◽  
Nan Chen ◽  
Zengling Li ◽  
Huibo Shao ◽  
Liangti Qu

Carbon materials are widely used as capacitive deionization (CDI) electrodes due to their high specific surface area (SSA), superior conductivity, and better stability, including activated carbon, carbon aerogels, carbon nanotubes and graphene.


2020 ◽  
Vol 4 (3) ◽  
pp. 43 ◽  
Author(s):  
Zheng Yue ◽  
Hamza Dunya ◽  
Maziar Ashuri ◽  
Kamil Kucuk ◽  
Shankar Aryal ◽  
...  

A new porous activated carbon (AC) material with very high specific surface area (3193 m2 g−1) was prepared by the carbonization of a colloidal silica-templated melamine–formaldehyde (MF) polymer composite followed by KOH-activation. Several electrical double-layer capacitor (EDLC) cells were fabricated using this AC as the electrode material. A number of organic solvent-based electrolyte formulations were examined to optimize the EDLC performance. Both high specific discharge capacitance of 130.5 F g−1 and energy density 47.9 Wh kg−1 were achieved for the initial cycling. The long-term cycling performance was also measured.


2011 ◽  
Vol 233-235 ◽  
pp. 378-381
Author(s):  
Ling Zhang ◽  
Dan Zuo ◽  
Su Li Guo ◽  
Zhong Cao ◽  
Jun Liu ◽  
...  

A kind of bamboo char with high specific surface area has been studied as the absorption material of the activated carbon electrodes, and the electrosorptive deionization ability of the as-obtained electrodes for elimination of metal ions in tap water has been examined under certain direct voltage. The effects of the distance between the elect rode plates, and the numbers of the electrode plates have been investigated in detail. The results show that the electrodes exhibit the optimal deionization ability over 2 cm of distance between the electrode plates and 4 couples of the elect rode plates. The reverse wash treatment indicates that the activated carbon electrodes can be cycle used. The efficiency order of the electrosorptive deionization of different metal ions on the activated carbon electrode has been summarized as follows: Pb2+>Cu2+>Cr3+>Cd2+.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1982
Author(s):  
Qinghua Yuan ◽  
Zhuwen Ma ◽  
Junbiao Chen ◽  
Zhenrui Huang ◽  
Zeming Fang ◽  
...  

The recycling of macromolecular biowastes has been a problem for the agriculture industry. In this study, a novel N, S-codoped activated carbon material with an ultrahigh specific area was produced for the application of a supercapacitor electrode, using tobacco stalk biowastes as the carbon source, KOH as the activating agents and thiourea as the doping agent. Tobacco stalk is mainly composed of cellulose, but also contains many small molecules and inorganic salts. KOH activation resulted in many mesopores, giving the tobacco stem-activated carbon a large specific surface area and double-layer capacitance. The specific surface area of the samples reached up to 3733 m2·g−1, while the maximum specific capacitance of the samples obtained was up to 281.3 F·g−1 in the 3-electrode tests (1 A·g−1). The doping of N and S elements raised the specific capacitance significantly, which could be increased to a value as high as 422.5 F·g−1 at a current density of 1 A·g−1 in the 3-electrode tests, but N, S-codoping also led to instability. The results of this article prove that tobacco stalks could be efficiently reused in the field of supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document