Landslide susceptibility assessment at the Suichuan area (China) using support vector machine model

CATENA ◽  
2015 ◽  
Vol 125 ◽  
pp. 91-101 ◽  
Author(s):  
Mahyat Shafapour Tehrany ◽  
Biswajeet Pradhan ◽  
Shattri Mansor ◽  
Noordin Ahmad

2018 ◽  
Vol 10 (10) ◽  
pp. 1527 ◽  
Author(s):  
Dieu Tien Bui ◽  
Himan Shahabi ◽  
Ataollah Shirzadi ◽  
Kamran Chapi ◽  
Mohsen Alizadeh ◽  
...  

Since landslide detection using the combination of AIRSAR data and GIS-based susceptibility mapping has been rarely conducted in tropical environments, the aim of this study is to compare and validate support vector machine (SVM) and index of entropy (IOE) methods for landslide susceptibility assessment in Cameron Highlands area, Malaysia. For this purpose, ten conditioning factors and observed landslides were detected by AIRSAR data, WorldView-1 and SPOT 5 satellite images. A spatial database was generated including a total of 92 landslide locations encompassing the same number of observed and detected landslides, which was divided into training (80%; 74 landslide locations) and validation (20%; 18 landslide locations) datasets. Results of the difference between observed and detected landslides using root mean square error (RMSE) indicated that only 16.3% error exists, which is fairly acceptable. The validation process was performed using statistical-based measures and the area under the receiver operating characteristic (AUROC) curves. Results of validation process indicated that the SVM model has the highest values of sensitivity (88.9%), specificity (77.8%), accuracy (83.3%), Kappa (0.663) and AUROC (84.5%), followed by the IOE model. Overall, the SVM model applied to detected landslides is considered to be a promising technique that could be tested and utilized for landslide susceptibility assessment in tropical environments.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 212
Author(s):  
Yu-Wei Liu ◽  
Huan Feng ◽  
Heng-Yi Li ◽  
Ling-Ling Li

Accurate prediction of photovoltaic power is conducive to the application of clean energy and sustainable development. An improved whale algorithm is proposed to optimize the Support Vector Machine model. The characteristic of the model is that it needs less training data to symmetrically adapt to the prediction conditions of different weather, and has high prediction accuracy in different weather conditions. This study aims to (1) select light intensity, ambient temperature and relative humidity, which are strictly related to photovoltaic output power as the input data; (2) apply wavelet soft threshold denoising to preprocess input data to reduce the noise contained in input data to symmetrically enhance the adaptability of the prediction model in different weather conditions; (3) improve the whale algorithm by using tent chaotic mapping, nonlinear disturbance and differential evolution algorithm; (4) apply the improved whale algorithm to optimize the Support Vector Machine model in order to improve the prediction accuracy of the prediction model. The experiment proves that the short-term prediction model of photovoltaic power based on symmetry concept achieves ideal accuracy in different weather. The systematic method for output power prediction of renewable energy is conductive to reducing the workload of predicting the output power and to promoting the application of clean energy and sustainable development.


Sign in / Sign up

Export Citation Format

Share Document