Urbanization Affects Plant Flowering Phenology and Pollinator Community: Effects of Water Availability and Land Cover

Urban Ecology ◽  
2015 ◽  
pp. 167-191
Author(s):  
Kaesha Neil ◽  
Jianguo Wu ◽  
Christofer Bang ◽  
Stanley Faeth
Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Nick Martin

Climate and land use and land cover (LULC) changes will impact watershed-scale water resources. These systemic alterations will have interacting influences on water availability. A probabilistic risk assessment (PRA) framework for water resource impact analysis from future systemic change is described and implemented to examine combined climate and LULC change impacts from 2011–2100 for a study site in west-central Texas. Internally, the PRA framework provides probabilistic simulation of reference and future conditions using weather generator and water balance models in series—one weather generator and water balance model for reference and one of each for future conditions. To quantify future conditions uncertainty, framework results are the magnitude of change in water availability, from the comparison of simulated reference and future conditions, and likelihoods for each change. Inherent advantages of the framework formulation for analyzing future risk are the explicit incorporation of reference conditions to avoid additional scenario-based analysis of reference conditions and climate change emissions scenarios. In the case study application, an increase in impervious area from economic development is the LULC change; it generates a 1.1 times increase in average water availability, relative to future climate trends, from increased runoff and decreased transpiration.


2021 ◽  
Vol 108 ◽  
pp. 103224
Author(s):  
Tárcio Rocha Lopes ◽  
Cornélio Alberto Zolin ◽  
Rafael Mingoti ◽  
Laurimar Gonçalves Vendrusculo ◽  
Frederico Terra de Almeida ◽  
...  

2020 ◽  
Author(s):  
Eleanor A Ainscoe ◽  
Barbara Hofmann ◽  
Felipe Colon ◽  
Iacopo Ferrario ◽  
Quillon Harpham ◽  
...  

<p>The current increase in the volume and quality of Earth Observation (EO) data being collected by satellites offers the potential to contribute to applications across a wide range of scientific domains. It is well established that there are correlations between characteristics that can be derived from EO satellite data, such as land surface temperature or land cover, and the incidence of some diseases. Thanks to the reliable frequent acquisition and rapid distribution of EO data it is now possible for this field to progress from using EO in retrospective analyses of historical disease case counts to using it in operational forecasting systems.</p><p>However, bringing together EO-based and non-EO-based datasets, as is required for disease forecasting and many other fields, requires carefully designed data selection, formatting and integration processes. Similarly, it requires careful communication between collaborators to ensure that the priorities of that design process match the requirements of the application.</p><p>Here we will present work from the D-MOSS (Dengue forecasting MOdel Satellite-based System) project. D-MOSS is a dengue fever early warning system for South and South East Asia that will allow public health authorities to identify areas at high risk of disease epidemics before an outbreak occurs in order to target resources to reduce spreading of epidemics and improve disease control. The D-MOSS system uses EO, meteorological and seasonal weather forecast data, combined with disease statistics and static layers such as land cover, as the inputs into a dengue fever model and a water availability model. Water availability directly impacts dengue epidemics due to the provision of mosquito breeding sites. The datasets are regularly updated with the latest data and run through the models to produce a new monthly forecast. For this we have designed a system to reliably feed standardised data to the models. The project has involved a close collaboration between remote sensing scientists, geospatial scientists, hydrologists and disease modelling experts. We will discuss our approach to the selection of data sources, data source quality assessment, and design of a processing and ingestion system to produce analysis-ready data for input to the disease and water availability models.</p>


2021 ◽  
Author(s):  
Vishesh L. Diengdoh ◽  
Barry W. Brook ◽  
Mark Hunt ◽  
Stefania Ondei

AbstractContextLand-use change threatens pollinators globally. However, pollinator-landscape studies tend to focus on certain focal taxa and landscapes with intensive human activities. This limits the implementation of targeted management policies for landscapes with different modifications and pollinator groups.ObjectivesThis study aims to determine which habitat characteristics can predict abundance and richness of multiple pollinator groups.MethodsWe collected field data on the relative abundance and observed richness of nectivorous birds, bees, beetles, butterflies across a mixed-use landscape in the Tasman Peninsula, Tasmania, Australia; and determined if they could be predicted using land use, land cover at different radii (100 m to 5000 m), plant genera and floral morphologies.ResultsUsing feature selection, we found land use was an overall poor predictor, with land cover, plant genera and floral morphologies being superior. Random forest was used for predictive modelling and goodness of fit R2 calculated was highest and lowest for butterfly abundance (0.65) and butterfly richness (0.08) respectively. Variable importance was calculated, and forest cover achieved the highest importance value for nectivorous birds and butterflies, whereas open cover was most important for bees and the presence of the plant genus Leptospermum for beetles.ConclusionsOur results emphasise the importance of considering multiple habitat factors to manage and support a dynamic pollinator community. We demonstrate how predictive modelling can be used to make informed decisions on how to have a dynamic pollinator community in a way that can be applied to real-world scenarios to validate the models and further improve decision making.


2021 ◽  
Vol 9 ◽  
Author(s):  
M. Kate Gallagher ◽  
Diane R. Campbell

Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success.


Author(s):  
B. N. Shashikumar ◽  
V. Garg ◽  
B. R. Nikam

<p><strong>Abstract.</strong> Water is the prime requirement for agriculture, domestic uses and industrial production. In India the per capita available of water is decreasing at a higher rate due to impact of climate change and ever-increasing population. Rainwater harvesting is the technique which is being used in effective storing of surface runoff. There are various types of water harvesting structures namely check dam, farm pond, percolation tank, etc. However, identification of potential site for the construction of the particular water harvesting structure is bit difficult as it depends upon numerous parameters such as soil type, slope, water availability, land use and land cover of the site and the surrounding, etc. The guidelines such as Food and Agriculture Organization; Integrated Mission for Sustainable Development are available for selecting suitable site for water harvesting structures. As the site suitability analysis involves multiple parameters for decision making, in the present study, the selection of suitable site for check dam is made through analytical hierarchy process (AHP) in geospatial domain for Hatni watershed, Madhya Pradesh, India. As location for check dam construction is influenced by soil texture, slope of the terrain, land use land cover, stream order and water availability; these parameters were derived from remote sensing data and analysed. The slope and stream network layers were generated from the digital elevation model (DEM). Further, the influence of soil and water availability in identifying the suitable sites was studied through soil texture and curve number. Different parameters influence the site suitability analysis, therefore, in the present study, IMSD guidelines were used to assign weights to each parameter under consideration. The layers were assigned weights by AHP technique based on pairwise comparison. The layers were reclassified according to the weights, then overlay analysis has been done to get the final site suitability map. As remote sensing provides the synoptic coverage of the earth, it has been further utilised to study the impact of water harvesting structure on its surrounding. The land use land cover map of before and after the construction of water harvesting structure was analysed for change in vegetation condition. It was observed that the vegetative cover has increased after implementation of the water conservation measures. It may be concluded that the geospatial technology has immense potential in site suitability studies for water harvesting structures.</p>


Sign in / Sign up

Export Citation Format

Share Document