scholarly journals Risk Assessment of Future Climate and Land Use/Land Cover Change Impacts on Water Resources

Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 38
Author(s):  
Nick Martin

Climate and land use and land cover (LULC) changes will impact watershed-scale water resources. These systemic alterations will have interacting influences on water availability. A probabilistic risk assessment (PRA) framework for water resource impact analysis from future systemic change is described and implemented to examine combined climate and LULC change impacts from 2011–2100 for a study site in west-central Texas. Internally, the PRA framework provides probabilistic simulation of reference and future conditions using weather generator and water balance models in series—one weather generator and water balance model for reference and one of each for future conditions. To quantify future conditions uncertainty, framework results are the magnitude of change in water availability, from the comparison of simulated reference and future conditions, and likelihoods for each change. Inherent advantages of the framework formulation for analyzing future risk are the explicit incorporation of reference conditions to avoid additional scenario-based analysis of reference conditions and climate change emissions scenarios. In the case study application, an increase in impervious area from economic development is the LULC change; it generates a 1.1 times increase in average water availability, relative to future climate trends, from increased runoff and decreased transpiration.

2021 ◽  
Vol 108 ◽  
pp. 103224
Author(s):  
Tárcio Rocha Lopes ◽  
Cornélio Alberto Zolin ◽  
Rafael Mingoti ◽  
Laurimar Gonçalves Vendrusculo ◽  
Frederico Terra de Almeida ◽  
...  

Climate ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 83
Author(s):  
Geofrey Gabiri ◽  
Bernd Diekkrüger ◽  
Kristian Näschen ◽  
Constanze Leemhuis ◽  
Roderick van der Linden ◽  
...  

The impact of climate and land use/land cover (LULC) change continues to threaten water resources availability for the agriculturally used inland valley wetlands and their catchments in East Africa. This study assessed climate and LULC change impacts on the hydrological processes of a tropical headwater inland valley catchment in Uganda. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze climate and LULC change impacts on the hydrological processes. An ensemble of six regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment for two Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were used for climate change assessment for historical (1976–2005) and future climate (2021–2050). Four LULC scenarios defined as exploitation, total conservation, slope conservation, and protection of headwater catchment were considered. The results indicate an increase in precipitation by 7.4% and 21.8% of the annual averages in the future under RCP4.5 and RCP8.5, respectively. Future wet conditions are more pronounced in the short rainy season than in the long rainy season. Flooding intensity is likely to increase during the rainy season with low flows more pronounced in the dry season. Increases in future annual averages of water yield (29.0% and 42.7% under RCP4.5 and RCP8.5, respectively) and surface runoff (37.6% and 51.8% under RCP4.5 and RCP8.5, respectively) relative to the historical simulations are projected. LULC and climate change individually will cause changes in the inland valley hydrological processes, but more pronounced changes are expected if the drivers are combined, although LULC changes will have a dominant influence. Adoption of total conservation, slope conservation and protection of headwater catchment LULC scenarios will significantly reduce climate change impacts on water resources in the inland valley. Thus, if sustainable climate-smart management practices are adopted, the availability of water resources for human consumption and agricultural production will increase.


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2021 ◽  
Vol 13 (8) ◽  
pp. 4092
Author(s):  
Jamila Ngondo ◽  
Joseph Mango ◽  
Ruiqing Liu ◽  
Joel Nobert ◽  
Alfonse Dubi ◽  
...  

Evaluation of river basins requires land-use and land-cover (LULC) change detection to determine hydrological and ecological conditions for sustainable use of their resources. This study assessed LULC changes over 28 years (1990–2018) in the Wami–Ruvu Basin, located in Tanzania, Africa. Six pairs of images acquired using Landsat 5 TM and 8 OLI sensors in 1990 and 2018, respectively, were mosaicked into a single composite image of the basin. A supervised classification using the Neural Network classifier and training data was used to create LULC maps for 1990 and 2018, and targeted the following eight classes of agriculture, forest, grassland, bushland, built-up, bare soil, water, and wetland. The results show that over the past three decades, water and wetland areas have decreased by 0.3%, forest areas by 15.4%, and grassland by 6.7%, while agricultural, bushland, bare soil, and the built-up areas have increased by 11.6%, 8.2%, 1.6%, and 0.8%, respectively. LULC transformations were assessed with water discharge, precipitation, and temperature, and the population from 1990 to 2018. The results revealed decreases in precipitation, water discharge by 4130 m3, temperature rise by 1 °C, and an increase in population from 5.4 to 10 million. For proper management of water-resources, we propose three strategies for water-use efficiency-techniques, a review legal frameworks, and time-based LULC monitoring. This study provides a reference for water resources sustainability for other countries with basins threatened by LULC changes.


2016 ◽  
Author(s):  
Jing Yin ◽  
Fan He ◽  
YuJiu Xiong ◽  
GuoYu Qiu

Abstract. Water resources, which are substantially affected by land use/land cover (LULC) and climate changes, are a key limiting factor for ecosystems in arid and semi-arid regions exhibiting high vulnerability. It is crucial to assess the impact of LULC and climate changes on water resources in these areas. However, conflicting results on the effect of the LULC and climate changes on runoff have been reported for relatively large basins, e.g., in the Jinghe River Basin (JRB), a typical large catchment (> 45000 km2) located in a semi-humid and arid transition zone on the central Loess Plateau, Northwest China. In this study, we focused on quantifying both the combined and isolated impacts of LULC and climate changes on surface runoff. It is hypothesized that under climatic warming and drying conditions, LULC change, which is primarily caused by intensive human activities, such as the conversion of cropland to forest and grassland program (CCFGP), will alter runoff markedly in the JRB. The Soil and Water Assessment Tool (SWAT) was adopted to perform simulations. The simulated results indicated that although runoff increased very little between the 1970s and the 2000s due to the combined effects of LULC and climate changes, LULC and climate changes affected surface runoff differently in each decade, i.e., runoff increased with elevated precipitation between the 1970s and the 1980s (precipitation contributed 88 % to the increased runoff). Thereafter, runoff decreased and became increasingly influenced by LULC change, with a 44 % contribution between the 1980s and the 1990s and a 71 % contribution between the 1990s and the 2000s. Our findings revealed that large-scale LULC under the CCFGP since the late 1990s has had an important effect on the hydrological cycle and that the conflicting findings on the effect of the LULC and climate changes on runoff in relatively large basins are likely caused by uncertainty in hydrological simulations.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2372
Author(s):  
Megersa Kebede Leta ◽  
Tamene Adugna Demissie ◽  
Jens Tränckner

Land use land cover (LULC) change is the crucial driving force that affects the hydrological processes of a watershed. The changes of LULC have an important influence and are the main factor for monitoring the water balances. The assessment of LULC change is indispensable for sustainable development of land and water resources. Understanding the watershed responses to environmental changes and impacts of LULC classes on hydrological components is vigorous for planning water resources, land resource utilization, and hydrological balance sustaining. In this study, LULC effects on hydrological parameters of the Nashe watershed, Blue Nile River Basin are investigated. For this, historical and future LULC change scenarios in the Nashe watershed are implemented into a calibrated Soil and Water Assessment Tool (SWAT) model. Five LULC scenarios have been developed that represent baseline, current, and future periods corresponding to the map of 1990, 2005, 2019, 2035, and 2050. The predicted increase of agricultural and urban land by decreasing mainly forest land will lead till 2035 to an increase of 2.33% in surface runoff and a decline in ground water flow, lateral flow, and evapotranspiration. Between 2035 and 2050, a gradual increase of grass land and range land could mitigate the undesired tendency. The applied combination of LULC prognosis with process-based hydrologic modeling provide valuable data about the current and future understanding of variation in hydrological parameters and assist concerned bodies to improve land and water management in formulating approaches to minimize the conceivable increment of surface runoff.


2021 ◽  
Vol 11 (12) ◽  
pp. 5376
Author(s):  
Chaodong Li ◽  
Mingyi Yang ◽  
Zhanbin Li ◽  
Baiqun Wang

In recent decades, population growth and economic development have greatly influenced the pattern of land use/land cover (LULC) in Rwanda. Nevertheless, LULC patterns and their underlying change mechanisms under future climate conditions are not well known. Therefore, it is particularly important to explore the direction of LULC transfer in the study area, identify the factors driving the transfer of different types of LULC and their changes, and simulate future LULC patterns under future climate conditions. Based on LULC analyses of Rwanda in 1990, 2000, 2010, and 2015, the LULC pattern of Rwanda in the next 30 years was simulated using an LULC transition matrix, random forest sampling, the Markov chain model, and the PLUS model. The results showed that LULC change in the study area primarily comprised a decrease in forest area and expansion of cropland area, accompanied by a small increase in grassland area and an annual increase in urban land area. Prior to 2000, the LULC in Rwanda was mainly converted from forest and grassland to cropland, with the ratio being 0.72:0.28. After 2010, the LULC was mainly converted from forest to grassland and cropland, with the ratio being 0.83:0.17. Changes in forests, grasslands, and cropland are driven by multiple factors, whereas changes in wetlands, water, urban land, and unused land are more likely to be driven by a single factor. The existing trend of LULC change will continue for the next 30 years, and the future LULC pattern will exhibit a trend in which cropland area will increase in the west and grassland area will decrease, whereas grassland area will increase in the east and cropland area will decrease.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1105
Author(s):  
Dorcas Idowu ◽  
Wendy Zhou

Incessant flooding is a major hazard in Lagos State, Nigeria, occurring concurrently with increased urbanization and urban expansion rate. Consequently, there is a need for an assessment of Land Use and Land Cover (LULC) changes over time in the context of flood hazard mapping to evaluate the possible causes of flood increment in the State. Four major land cover types (water, wetland, vegetation, and developed) were mapped and analyzed over 35 years in the study area. We introduced a map-matrix-based, post-classification LULC change detection method to estimate multi-year land cover changes between 1986 and 2000, 2000 and 2016, 2016 and 2020, and 1986 and 2020. Seven criteria were identified as potential causative factors responsible for the increasing flood hazards in the study area. Their weights were estimated using a combined (hybrid) Analytical Hierarchy Process (AHP) and Shannon Entropy weighting method. The resulting flood hazard categories were very high, high, moderate, low, and very low hazard levels. Analysis of the LULC change in the context of flood hazard suggests that most changes in LULC result in the conversion of wetland areas into developed areas and unplanned development in very high to moderate flood hazard zones. There was a 69% decrease in wetland and 94% increase in the developed area during the 35 years. While wetland was a primary land cover type in 1986, it became the least land cover type in 2020. These LULC changes could be responsible for the rise in flooding in the State.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


Author(s):  
A. B. Rimba ◽  
T. Atmaja ◽  
G. Mohan ◽  
S. K. Chapagain ◽  
A. Arumansawang ◽  
...  

Abstract. Bali has been open to tourism since the beginning of the 20th century and is known as the first tourist destination in Indonesia. The Denpasar, Badung, Gianyar, and Tabanan (Sarbagita) areas experience the most rapid growth of tourism activity in Bali. This rapid tourism growth has caused land use and land cover (LULC) to change drastically. This study mapped the land-use change in Bali from 2000 to 2025. The land change modeller (LCM) tool in ArcGIS was employed to conduct this analysis. The images were classified into agricultural land, open area, mangrove, vegetation/forest, and built-up area. Some Landsat images in 2000 and 2015 were exploited in predicting the land use and land cover (LULC) change in 2019 and 2025. To measure the accuracy of prediction, Landsat 8 OLI images for 2019 were classified and tested to verify the LULC model for 2019. The Multi-Layer Perceptron (MLP) neural network was trained with two influencing factors: elevation and road network. The result showed that the built-up growth direction expanded from the Denpasar area to the neighbouring areas, and land was converted from agriculture, open area and vegetation/forest to built-up for all observation years. The built-up was predicted growing up to 43 % from 2015 to 2025. This model could support decision-makers in issuing a policy for monitoring LULC since the Kappa coefficients were more than 80% for all models.


Sign in / Sign up

Export Citation Format

Share Document