Above ground Terrestrial Biomass and Carbon Stock Estimations from Multisensor Remote Sensing

2018 ◽  
pp. 781-802
Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 692
Author(s):  
MD Abdul Mueed Choudhury ◽  
Ernesto Marcheggiani ◽  
Andrea Galli ◽  
Giuseppe Modica ◽  
Ben Somers

Currently, the worsening impacts of urbanizations have been impelled to the importance of monitoring and management of existing urban trees, securing sustainable use of the available green spaces. Urban tree species identification and evaluation of their roles in atmospheric Carbon Stock (CS) are still among the prime concerns for city planners regarding initiating a convenient and easily adaptive urban green planning and management system. A detailed methodology on the urban tree carbon stock calibration and mapping was conducted in the urban area of Brussels, Belgium. A comparative analysis of the mapping outcomes was assessed to define the convenience and efficiency of two different remote sensing data sources, Light Detection and Ranging (LiDAR) and WorldView-3 (WV-3), in a unique urban area. The mapping results were validated against field estimated carbon stocks. At the initial stage, dominant tree species were identified and classified using the high-resolution WorldView3 image, leading to the final carbon stock mapping based on the dominant species. An object-based image analysis approach was employed to attain an overall accuracy (OA) of 71% during the classification of the dominant species. The field estimations of carbon stock for each plot were done utilizing an allometric model based on the field tree dendrometric data. Later based on the correlation among the field data and the variables (i.e., Normalized Difference Vegetation Index, NDVI and Crown Height Model, CHM) extracted from the available remote sensing data, the carbon stock mapping and validation had been done in a GIS environment. The calibrated NDVI and CHM had been used to compute possible carbon stock in either case of the WV-3 image and LiDAR data, respectively. A comparative discussion has been introduced to bring out the issues, especially for the developing countries, where WV-3 data could be a better solution over the hardly available LiDAR data. This study could assist city planners in understanding and deciding the applicability of remote sensing data sources based on their availability and the level of expediency, ensuring a sustainable urban green management system.


Agromet ◽  
2010 ◽  
Vol 24 (1) ◽  
pp. 33
Author(s):  
Naimatu Solicha ◽  
Tania June ◽  
M. Ardiansyah ◽  
Antonius B. W.

Forests play an important role in global carbon cycling, since they hold a large pool of carbon as well as potential carbon sinks and sources to the atmosphere. Accurate estimation of forest biomass is required for greenhouse gas inventories and terrestrial carbon accounting. The information on biomass is essential to assess the total and the annual capacity of forest vigor. Estimation of aboveground biomass is necessary for studying productivity, carbon cycles, nutrient allocation, and fuel accumulation in terrestrial ecosystem. The possibility that above ground forest biomass might be determined from space is a promising alternative to ground-based methods. Remote sensing has opened an effective way to estimate forest biomass and carbon. By the combination of data field measurement and allometric equation, the above ground trees biomass possible to be estimated over the large area. The objectives of this research are: (1) To estimate the above ground tree biomass and carbon stock of forest cover in Lore Lindu National Park by combination of field data observation, allometric equation and multispectral satellite image; (2) to find the equation model between parameter that determines the biomass estimation. The analysis showed that field data observation and satellite image classification influencing much on the accuracy of trees biomass and carbon stock estimation. The forest cover type A and B (natural forest with the minor timber extraction) has the higher biomass than C and D (natural forest with the major timber extraction and agro forestry), it is about 607 ton/ha and 603 ton/ha. Forest cover type C is 457 ton/ha. Forest cover type D has the lowest biomass is about 203 ton/ha. Natural forest has high biomass, because of the tropical vegetation trees heterogeneity. Forest cover D has the lowest trees biomass because its vegetation component as secondary forest with the homogeneity of cacao plantation. The forest biomass and carbon estimation for each cover type will be useful for the further equation analysis when using the remote sensing technology for estimating the total biomass and for the economic carbon analysis.Forests play an important role in global carbon cycling, since they hold a large pool of carbon as well as potential carbon sinks and sources to the atmosphere. Accurate estimation of forest biomass is required for greenhouse gas inventories and terrestrial carbon accounting. The information on biomass is essential to assess the total and the annual capacity of forest vigor. Estimation of aboveground biomass is necessary for studying productivity, carbon cycles, nutrient allocation, and fuel accumulation in terrestrial ecosystem. The possibility that above ground forest biomass might be determined from space is a promising alternative to ground-based methods. Remote sensing has opened an effective way to estimate forest biomass and carbon. By the combination of data field measurement and allometric equation, the above ground trees biomass possible to be estimated over the large area. The objectives of this research are: (1) To estimate the above ground tree biomass and carbon stock of forest cover in Lore Lindu National Park by combination of field data observation, allometric equation and multispectral satellite image; (2) to find the equation model between parameter that determines the biomass estimation. The analysis showed that field data observation and satellite image classification influencing much on the accuracy of trees biomass and carbon stock estimation. The forest cover type A and B (natural forest with the minor timber extraction) has the higher biomass than C and D (natural forest with the major timber extraction and agro forestry), it is about 607 ton/ha and 603 ton/ha. Forest cover type C is 457 ton/ha. Forest cover type D has the lowest biomass is about 203 ton/ha. Natural forest has high biomass, because of the tropical vegetation trees heterogeneity. Forest cover D has the lowest trees biomass because its vegetation component as secondary forest with the homogeneity of cacao plantation. The forest biomass and carbon estimation for each cover type will be useful for the further equation analysis when using the remote sensing technology for estimating the total biomass and for the economic carbon analysis.


Author(s):  
P. Wicaksono ◽  
P. Danoedoro ◽  
U. Nehren ◽  
A. Maishella ◽  
M. Hafizt ◽  
...  

Abstract. Remote sensing can make seagrass aboveground carbon stock (AGCseagrass) information spatially extensive and widely available. Therefore, it is necessary to develop a rapid approach to estimate AGCseagrass in the field to train and assess its remote sensing-based mapping. The aim of this research is to (1) analyze the Percent Cover (PCv)-AGCseagrass relationship in seagrass at the species and community levels to estimate AGCseagrass from PCv and (2) perform AGCseagrass mapping at both levels using WorldView-2 image and assess the accuracy of the resulting map. This research was conducted in Karimunjawa and Kemujan Islands, Indonesia. Support Vector Machine (SVM) classification was used to map seagrass species composition, and stepwise regression was used to model AGCseagrass using deglint, water column corrected, and principle component bands. The results were a rapid AGCseagrass estimation using an easily measured parameter, the seagrass PCv. At the community level, the AGCseagrass map had 58.79% accuracy (SEE = 5.41 g C m−2), whereas at the species level, the accuracy increased for the class Ea (64.73%, SEE = 6.86 g C m−2) and EaThCr (70.02%, SEE = 4.32 g C m−2) but decreased for ThCr (55.08%, SEE = 2.55 g C m−2). The results indicate that WorldView-2 image reflectance can accurately map AGCseagrass in the study area in the range of 15–20 g C m−2 for Ea, 10–15 g C m−2 for EaThCr, and 4–8 g C m−2 for ThCr. Based on our model, the AGCseagrass in the study area was estimated at 13.39 t C.


2019 ◽  
Vol 11 (9) ◽  
pp. 1018 ◽  
Author(s):  
Zhen Li ◽  
Qijie Zan ◽  
Qiong Yang ◽  
Dehuang Zhu ◽  
Youjun Chen ◽  
...  

There is ongoing interest in developing remote sensing technology to map and monitor the spatial distribution and carbon stock of mangrove forests. Previous research has demonstrated that the relationship between remote sensing derived parameters and aboveground carbon (AGC) stock varies for different species types. However, the coarse spatial resolution of satellite images has restricted the estimated AGC accuracy, especially at the individual species level. Recently, the availability of unmanned aerial vehicles (UAVs) has provided an operationally efficient approach to map the distribution of species and accurately estimate AGC stock at a fine scale in mangrove areas. In this study, we estimated mangrove AGC in the core area of northern Shenzhen Bay, South China, using four kinds of variables, including species type, canopy height metrics, vegetation indices, and texture features, derived from a low-cost UAV system. Three machine-learning algorithm models, including Random Forest (RF), Support Vector Regression (SVR), and Artificial Neural Network (ANN), were compared in this study, where a 10-fold cross-validation was used to evaluate each model’s effectiveness. The results showed that a model that used all four type of variables, which were based on the RF algorithm, provided better AGC estimates (R2 = 0.81, relative RMSE (rRMSE) = 0.20, relative MAE (rMAE) = 0.14). The average predicted AGC from this model was 93.0 ± 24.3 Mg C ha−1, and the total estimated AGC was 7903.2 Mg for the mangrove forests. The species-based model had better performance than the considered canopy-height-based model for AGC estimation, and mangrove species was the most important variable among all the considered input variables; the mean height (Hmean) the second most important variable. Additionally, the RF algorithms showed better performance in terms of mangrove AGC estimation than the SVR and ANN algorithms. Overall, a low-cost UAV system with a digital camera has the potential to enable satisfactory predictions of AGC in areas of homogenous mangrove forests.


Author(s):  
Amandangi Wahyuning Hastuti ◽  
Komang Iwan Suniada ◽  
Fikrul Islamy

Mangrove vegetation is one of the forest ecosystems that offers a potential of substantial greenhouse gases (GHG) emission mitigation, due to its ability to sink the amount of CO2 in the atmosphere through the photosynthesis process. Mangroves have been providing multiple benefits either as the source of food, the habitat of wildlife, the coastline protectors as well as the CO2 absorber, higher than other forest types. To explore the role of mangrove vegetation in sequestering the carbon stock, the study on the use of remotely sensed data in estimating carbon stock was applied. This paper describes an examination of the use of remote sensing data particularly Landsat-data with the main objective to estimate carbon stock of mangrove vegetation in Perancak Estuary, Jembrana, Bali. The carbon stock was estimated by analyzing the relationship between NDVI, Above Ground Biomass (AGB) and Below Ground Biomass (BGB). The total carbon stock was obtained by multiplying the total biomass with the carbon organic value of 0.47. The study results show that the total accumulated biomass obtained from remote sensing data in Perancak Estuary in 2015 is about 47.20±25.03 ton ha-1 with total carbon stock of about 22.18±11.76 tonC ha-1and CO2 sequestration 81.41±43.18 tonC ha-1.


Author(s):  
K. Narmada ◽  
K. Annaidasan

Aim: To study the carbon storage potential of Muthupet mangroves in Tamil Nadu using Remote sensing techniques. Place and Duration: The study is carried out in Muthupet Mangroves for the years 2000, 2010 and 2017. Methodology: In this study the remote sensing images were processed using the ERDAS and ArcGIS software and the NDVI (Normalized Difference Vegetation Index) has also been applied to estimate the quantity of carbon sequestration capability for the Avicennia marina mangrove growing in the Muthupet region for the period 2000-2017. The formula proposed by Lai [10] was used to calculate the carbon stock using geospatial techniques. Results: The results show that the mangroves in Muthupet region has NDVI values between -0.671 and 0.398 in 2000, -0.93 and 0.621 in 2010 and -0.66 and 0.398 in 2017. The observation indicates the reliability and validity of the aviation remote sensing with high resolution and with near red spectrum experimented in this research for estimating the the Avicennia marina (Forsk.) mangrove growing in this region. The estimated quantity of carbon di oxide sequestrated by the mangrove was about 1475.642 Mg/Ha in 2000, 3646.312 Mg/Ha in 2010 and 1677.72 Mg/Ha in 2017. Conclusion: The capacity of the Avicennia marina growing in Muthupet region to sequestrate carbon show that it has a great potential for development and implementation. The results obtained in this research can be used as a basis for policy makers, conservationists, regional planners, and researchers to deal with future development of cities and their surroundings in regions of highly ecological and environmental sensitivity. Thus the finding shows that wetlands are an important ecological boon as it helps to control the impact of climate change in many different ways.


Sign in / Sign up

Export Citation Format

Share Document