scholarly journals Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms

2019 ◽  
Vol 10 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Jian-Bin Huang ◽  
Peng-Kang Lou ◽  
Hong-Wei Sun ◽  
Yong Luo ◽  
Zong-Ci Zhao

Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


2021 ◽  
Vol 196 ◽  
pp. 107220
Author(s):  
A. Schwanka Trevisan ◽  
A. Mendonça ◽  
R. Gagnon ◽  
M. Fecteau ◽  
J. Mahseredjian
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 551
Author(s):  
Sofia Spyridonidou ◽  
Georgia Sismani ◽  
Eva Loukogeorgaki ◽  
Dimitra G. Vagiona ◽  
Hagit Ulanovsky ◽  
...  

In this work, an innovative sustainable spatial energy planning framework is developed on national scale for identifying and prioritizing appropriate, technically and economically feasible, environmentally sustainable as well as socially acceptable sites for the siting of large-scale onshore Wind Farms (WFs) and Photovoltaic Farms (PVFs) in Israel. The proposed holistic framework consists of distinctive steps allocated in two successive modules (the Planning and the Field Investigation module), and it covers all relevant dimensions of a sustainable siting analysis (economic, social, and environmental). It advances a collaborative and participatory planning approach by combining spatial planning tools (Geographic Information Systems (GIS)) and multi-criteria decision-making methods (e.g., Analytical Hierarchy Process (AHP)) with versatile participatory planning techniques in order to consider the opinion of three different participatory groups (public, experts, and renewable energy planners) within the site-selection processes. Moreover, it facilitates verification of GIS results by conducting appropriate field observations. Sites of high suitability, accepted by all participatory groups and field verified, form the final outcome of the proposed framework. The results illustrate the existence of high suitable sites for large-scale WFs’ and PVFs’ siting and, thus, the potential deployment of such projects towards the fulfillment of the Israeli energy targets in the near future.


2017 ◽  
Vol 20 (2) ◽  
pp. 187-190 ◽  
Author(s):  
Bradley Plunkett ◽  
Andrew Duff ◽  
Ross Kingwell ◽  
David Feldman

The average size of Australian farms in scale and revenue are the globe’s largest. This scale is a result, in part, of low average rural population densities; development patterns in broadacre production; low levels of effective public policy transfers; a stable and suitable institutional setting suitable for corporate and other large scale investment; and low yields. It is also a factor of the natural variability of the country’s climatic systems which have contributed to the scale of extensive northern cattle production; this variability has implications for the pattern of ownership of broadacre and extensive production. Corporate ownership, tends to concentrate production aggregations at sufficient scale to offset its additional overheads in areas of relative climatic stability and to replicate these agroholding aggregations spatially to protect the stability of revenue flows. Family structures are more dominant in areas of greater climatic variability. Of interest is the impact that any increasing climatic variability (versus rapid changes in technology) may have upon this pattern.


Author(s):  
I. Janajreh ◽  
C. Ghenai

Large scale wind turbines and wind farms continue to evolve mounting 94.1GW of the electrical grid capacity in 2007 and expected to reach 160.0GW in 2010 according to World Wind Energy Association. They commence to play a vital role in the quest for renewable and sustainable energy. They are impressive structures of human responsiveness to, and awareness of, the depleting fossil fuel resources. Early generation wind turbines (windmills) were used as kinetic energy transformers and today generate 1/5 of the Denmark’s electricity and planned to double the current German grid capacity by reaching 12.5% by year 2010. Wind energy is plentiful (72 TW is estimated to be commercially viable) and clean while their intensive capital costs and maintenance fees still bar their widespread deployment in the developing world. Additionally, there are technological challenges in the rotor operating characteristics, fatigue load, and noise in meeting reliability and safety standards. Newer inventions, e.g., downstream wind turbines and flapping rotor blades, are sought to absorb a larger portion of the cost attributable to unrestrained lower cost yaw mechanisms, reduction in the moving parts, and noise reduction thereby reducing maintenance. In this work, numerical analysis of the downstream wind turbine blade is conducted. In particular, the interaction between the tower and the rotor passage is investigated. Circular cross sectional tower and aerofoil shapes are considered in a staggered configuration and under cross-stream motion. The resulting blade static pressure and aerodynamic forces are investigated at different incident wind angles and wind speeds. Comparison of the flow field results against the conventional upstream wind turbine is also conducted. The wind flow is considered to be transient, incompressible, viscous Navier-Stokes and turbulent. The k-ε model is utilized as the turbulence closure. The passage of the rotor blade is governed by ALE and is represented numerically as a sliding mesh against the upstream fixed tower domain. Both the blade and tower cross sections are padded with a boundary layer mesh to accurately capture the viscous forces while several levels of refinement were implemented throughout the domain to assess and avoid the mesh dependence.


Sign in / Sign up

Export Citation Format

Share Document