Simulation of Flow Field on a Large Scale Wind Turbine

Author(s):  
I. Janajreh ◽  
C. Ghenai

Large scale wind turbines and wind farms continue to evolve mounting 94.1GW of the electrical grid capacity in 2007 and expected to reach 160.0GW in 2010 according to World Wind Energy Association. They commence to play a vital role in the quest for renewable and sustainable energy. They are impressive structures of human responsiveness to, and awareness of, the depleting fossil fuel resources. Early generation wind turbines (windmills) were used as kinetic energy transformers and today generate 1/5 of the Denmark’s electricity and planned to double the current German grid capacity by reaching 12.5% by year 2010. Wind energy is plentiful (72 TW is estimated to be commercially viable) and clean while their intensive capital costs and maintenance fees still bar their widespread deployment in the developing world. Additionally, there are technological challenges in the rotor operating characteristics, fatigue load, and noise in meeting reliability and safety standards. Newer inventions, e.g., downstream wind turbines and flapping rotor blades, are sought to absorb a larger portion of the cost attributable to unrestrained lower cost yaw mechanisms, reduction in the moving parts, and noise reduction thereby reducing maintenance. In this work, numerical analysis of the downstream wind turbine blade is conducted. In particular, the interaction between the tower and the rotor passage is investigated. Circular cross sectional tower and aerofoil shapes are considered in a staggered configuration and under cross-stream motion. The resulting blade static pressure and aerodynamic forces are investigated at different incident wind angles and wind speeds. Comparison of the flow field results against the conventional upstream wind turbine is also conducted. The wind flow is considered to be transient, incompressible, viscous Navier-Stokes and turbulent. The k-ε model is utilized as the turbulence closure. The passage of the rotor blade is governed by ALE and is represented numerically as a sliding mesh against the upstream fixed tower domain. Both the blade and tower cross sections are padded with a boundary layer mesh to accurately capture the viscous forces while several levels of refinement were implemented throughout the domain to assess and avoid the mesh dependence.

Author(s):  
Isam Janajreh ◽  
Rana Qudaih ◽  
Ilham Talab ◽  
Zaki Al Nahari

Wind turbine technology has improved dramatically in the last two decades as demonstrated by their plummeting capital costs ($0.08/KW), the enhanced reliability, and the increased efficiency. Large-scale wind turbines and wind farms provided 94.1GW of electrical grid capacity in 2007, and are expected to reach 160 GW by 2010 according to WWEA. Wind energy is plentiful and sustainable energy source with an estimated potential capacity of 72 TW. In Denmark the inland and offshore implementation of wind energy generation adds 1/5 of their electrical grid capacity. In Germany, it is forecasted to attain 12.5% by early 2010. Offshore wind farms have lower ecological impact due to lack of land mortgage, easier transportation, and low perception of noise issue. In the gulf region, the generated power can fulfill the power needs of UAE’s islands, while the excess capacity can be channeled to the inland grids fulfilling the peak demand. In this work we will investigate the implementation of low-turning moment wind turbines in the UAE, suited for low wind speeds (∼3–5m/s) and that consists of two research components: (i) Collection of wind data, analysis, recommendation for implementation strategies, and using Masdar wind data to assess its characteristics and its fit for wind turbine implementation; (ii) Carry out flow analysis on a downwind, two-bladed, horizontal-axes wind turbine to investigate the flow lift, drag and wake characteristics on the tower blade interaction. The interaction is studied utilizing Arbitrary Lagrangian Eulerian method. Downwind turbines are self-aligned, pass up yaw mechanisms and its needed power, and have fewer moving parts that necessitate regular maintenance. These factors however play in favor of wind turbine that is subjected to low wind speed.


2021 ◽  
Author(s):  
Tayeb Brahimi ◽  
Ion Paraschivoiu

Wind energy researchers have recently invited the scientific community to tackle three significant wind energy challenges to transform wind power into one of the more substantial, low-cost energy sources. The first challenge is to understand the physics behind wind energy resources better. The second challenge is to study and investigate the aerodynamics, structural, and dynamics of large-scale wind turbine machines. The third challenge is to enhance grid integration, network stability, and optimization. This chapter book attempts to tackle the second challenge by detailing the physics and mathematical modeling of wind turbine aerodynamic loads and the performance of horizontal and vertical axis wind turbines (HAWT & VAWT). This work underlines success in the development of the aerodynamic codes CARDAAV and Qbalde, with a focus on Blade Element Method (BEM) for studying the aerodynamic of wind turbines rotor blades, calculating the induced velocity fields, the aerodynamic normal and tangential forces, and the generated power as a function of a tip speed ration including dynamic stall and atmospheric turbulence. The codes have been successfully applied in HAWT and VAWT machines, and results show good agreement compared to experimental data. The strength of the BEM modeling lies in its simplicity and ability to include secondary effects and dynamic stall phenomena and require less computer time than vortex or CFD models. More work is now needed for the simulation of wind farms, the influence of the wake, the atmospheric wind flow, the structure and dynamics of large-scale machines, and the enhancement of energy capture, control, stability, optimization, and reliability.


2020 ◽  
Vol 13 (10) ◽  
pp. 4993-5005
Author(s):  
Axel Kleidon ◽  
Lee M. Miller

Abstract. With the current expansion of wind power as a renewable energy source, wind turbines increasingly extract kinetic energy from the atmosphere, thus impacting its energy resource. Here, we present a simple, physics-based model (the Kinetic Energy Budget of the Atmosphere; KEBA) to estimate wind energy resource potentials that explicitly account for this removal effect. The model is based on the regional kinetic energy budget of the atmospheric boundary layer that encloses the wind farms of a region. This budget is shaped by horizontal and vertical influx of kinetic energy from upwind regions and the free atmosphere above, as well as the energy removal by the turbines, dissipative losses due to surface friction and wakes, and downwind outflux. These terms can be formulated in a simple yet physical way, yielding analytic expressions for how wind speeds and energy yields are reduced with increasing deployment of wind turbines within a region. We show that KEBA estimates compare very well to the modelling results of a previously published study in which wind farms of different sizes and in different regions were simulated interactively with the Weather Research and Forecasting (WRF) atmospheric model. Compared to a reference case without the effect of reduced wind speeds, yields can drop by more than 50 % at scales greater than 100 km, depending on turbine spacing and the wind conditions of the region. KEBA is able to reproduce these reductions in energy yield compared to the simulated climatological means in WRF (n=36 simulations; r2=0.82). The kinetic energy flux diagnostics of KEBA show that this reduction occurs because the total yield of the simulated wind farms approaches a similar magnitude as the influx of kinetic energy. Additionally, KEBA estimates the slowing of the region's wind speeds, the associated reduction in electricity yields, and how both are due to the depletion of the horizontal influx of kinetic energy by the wind farms. This limits typical large-scale wind energy potentials to less than 1 W m−2 of surface area for wind farms with downwind lengths of more than 100 km, although this limit may be higher in windy regions. This reduction with downwind length makes these yields consistent with climate-model-based idealized simulations of large-scale wind energy resource potentials. We conclude that KEBA is a transparent and informative modelling approach to advance the scientific understanding of wind energy limits and can be used to estimate regional wind energy resource potentials that account for the depletion of wind speeds.


2020 ◽  
Vol 16 (4) ◽  
pp. 71-79
Author(s):  
Levon Ghabuzyan ◽  
Christopher Luengas ◽  
Jim Kuo

The growing global interest in sustainable energy has paved the way to the rapid development of large-scale wind farms, consisting of dozens to hundreds of wind turbines. Although these large wind farms can generate enormous amount of power, they are also costly and require large areas of land or water, and thus are not suitable for urban environments. Smaller urban wind turbines have been developed for urban environments, but there are significant challenges to their widespread deployment. One of these challenges are their urban wind flows as they are strongly affected by complex building structures, producing highly turbulent flows. Any urban wind turbine would need to be designed to function efficiently and safely under these flow conditions; however, these unpredictable and turbulent winds can induce undesirable vibrations and cause early failures. Recently, bladeless wind turbines are gaining interest due to their reduced costs compared with conventional wind turbines such as the vertical-axis wind turbine and horizontal-axis wind turbine. These bladeless turbines convert flow wind energy into vibration energy, then converts the vibration energy into electricity. This paper examines the effects of force-induced vibrations on a cantilever beam system through wind tunnel experimentation. When fluid flows around a bluff body, periodic shedding of vortices may occur under the right conditions. The vortex shedding process creates an asymmetric pressure distribution on the body which causes the body to oscillate, known as vortex-induced vibrations. The purpose of the paper is to understand the factors affecting flow-induced vibrations and to improve wind energy harvesting from these vibrations. The first part of the paper focuses on wind tunnel experiments, by utilizing a cantilever beam configuration, conceptualized by previous research. Then, the experimental model was tested in different configurations, to determine the best setup for maximizing vibrations induced on the model. The long-term goal of the project was utilizing the model to optimize the system to improve efficiency of wind energy harvesting. The experimental results showed that the presence of an upstream cylinder will significantly improve the amplitude of vibration for energy harvesting, furthermore, the experiments showed that spacing in different directions also affect the amplitude of the vibrations. A two tandem cylinder system was used in this work, including a fixed rigid upstream cylinder and a downstream cylinder supported by a cantilever beam. Various configurations of these two cylinders in terms of spanwise and streamwise separation distances were studied and their maximum and root mean square displacements are reported for different wind speeds. Results showed that the presence of an upstream cylinder will significantly improve the amplitude of vibrations. This work verified that a wind energy harvester needs to consider the effects of wind speed and separation configuration of the cylinders in order to maximize the harvester’s performance in urban environments. KEYWORDS: Sustainable Energy; Energy Harvesting; Urban Environments; Bladeless Wind Turbines; Flow-Induced Vibrations; Cantilever Beam System; Wind Tunnel; Wake


Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
B. Paradiso ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were applied to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results evidence that the presently available theoretical correction models does not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used to explain the different flow features with respect to horizontal axis wind turbines.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3496
Author(s):  
Subhamoy Bhattacharya ◽  
Suryakanta Biswal ◽  
Muhammed Aleem ◽  
Sadra Amani ◽  
Athul Prabhakaran ◽  
...  

Large scale offshore wind farms are relatively new infrastructures and are being deployed in regions prone to earthquakes. Offshore wind farms comprise of both offshore wind turbines (OWTs) and balance of plants (BOP) facilities, such as inter-array and export cables, grid connection etc. An OWT structure can be either grounded systems (rigidly anchored to the seabed) or floating systems (with tension legs or catenary cables). OWTs are dynamically-sensitive structures made of a long slender tower with a top-heavy mass, known as Nacelle, to which a heavy rotating mass (hub and blades) is attached. These structures, apart from the variable environmental wind and wave loads, may also be subjected to earthquake related hazards in seismic zones. The earthquake hazards that can affect offshore wind farm are fault displacement, seismic shaking, subsurface liquefaction, submarine landslides, tsunami effects and a combination thereof. Procedures for seismic designing OWTs are not explicitly mentioned in current codes of practice. The aim of the paper is to discuss the seismic related challenges in the analysis and design of offshore wind farms and wind turbine structures. Different types of grounded and floating systems are considered to evaluate the seismic related effects. However, emphasis is provided on Tension Leg Platform (TLP) type floating wind turbine. Future research needs are also identified.


2015 ◽  
Vol 793 ◽  
pp. 388-392
Author(s):  
Farhan Ahmed Khammas ◽  
Kadhim Hussein Suffer ◽  
Ryspek Usubamatov ◽  
Mohmmad Taufiq Mustaffa

This paper reviews the available types of wind turbine which is one of the wind energy applications. The authors intend to give investors a better idea of which turbine is suitable for a particular setting and to provide a new outlook on vertical axis wind turbines. Wind technology has grown substantially since its original use as a method to grind grains and will only continue to grow. Vertical-axis wind turbines are more compact and suitable for residential and commercial areas while horizontal-axis wind turbines are more suitable for wind farms in rural areas or offshore. However, technological advances in vertical axis wind turbines that are able to generate more energy with a smaller footprint are now challenging the traditional use of horizontal wind turbines in wind farms. Vertical axis wind turbines do not need to be oriented to the wind direction and offer direct rotary output to a ground-level load, making them particularly suitable for water pumping, heating, purification and aeration, as well as stand-alone electricity generation. The use of high efficiency Darrieus turbines for such applications is virtually prohibited by their inherent inability to self-start.


Author(s):  
Sri Utami Handayani

Indonesia, with the longest coastline in the world, has enormous potential to develop large-scale wind energy. In wind turbines, the formation of a wake behind the wind turbine can reduce efficiency. It is estimated that the formation of a vortex tip behind the wind turbine blade can be reduced by adding a winglet. The main function of winglets attached to the blade is to reduce the effect of the wingtip vortices which are generated due to 3D spanwise flow that occurs because of the pressure non- equalization between the upper and lower blade surfaces. This paper aims to summarize the results of research on the effect of adding winglets to wind turbines.


2020 ◽  
Vol 184 ◽  
pp. 01094
Author(s):  
C Lavanya ◽  
Nandyala Darga Kumar

Wind energy is the renewable sources of energy and it is used to generate electricity. The wind farms can be constructed on land and offshore where higher wind speeds are prevailing. Most offshore wind farms employ fixed-foundation wind turbines in relatively shallow water. In deep waters floating wind turbines have gained popularity and are recent development. This paper discusses the various types of foundations which are in practice for use in wind turbine towers installed on land and offshore. The applicability of foundations based on depth of seabed and distance of wind farm from the shore are discussed. Also, discussed the improvement methods of weak or soft soils for the foundations of wind turbine towers.


2019 ◽  
Vol 13 ◽  
Author(s):  
Li Zheng ◽  
Zhang Wenda ◽  
Han Ruihua ◽  
Qi Weiqiang

Background: In a wind farm, the wind speed of the downstream wind turbine will be lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore, the wake of wind turbines is one of the uncertain factors predicting the annual power generation of wind farms. The study of the wake can effectively improve the efficiency of power generation. The arrangement of vertical axis wind turbines in wind farms is rarely studied. Therefore, it is important to study the vertical layout of wind turbines under the influence of wakes to obtain the best layout and unit spacing. Objective: To obtain the optimal layout and unit distance of wind turbines in Senegal wind turbines by studying the arrangement of Senegal vertical axis wind turbines in wind farms. Method: Based on the ANSYS CFX flow field calculation module, the fluid dynamics model of the Senegal fan was established and the flow field simulation analysis was carried out. Based on the Jensen wake model and its improved model, three layout methods for wind farm wind turbines are proposed: two units are arranged in series, two units are arranged in parallel, and three units are staggered. Through the simulation model, the wind energy utilization coefficient and wind speed of the wind turbine in the wind farm are obtained. Results: The optimal separation distance between the units was analyzed from four different angles: wind energy utilization coefficient, torque analysis, downstream tail flow and wind speed cloud contour. Finally, based on the optimal arrangement and unit distance, a triangular staggered wind farm composed of 10 units is established, and the integrated flow field characteristics of the whole wind farm are simulated and analyzed. The integrated flow field wake characteristics of the wind farm are obtained. Conclusion: In all three arrangements, the optimum distance between the units should be three times the diameter of the wind turbine. This arrangement ensures that most of the units are unaffected by the wake, the area affected by the low velocity wake of the wind farm is small, and the area affected by the high speed wake is large.


Sign in / Sign up

Export Citation Format

Share Document