Steel-Reinforced Concrete Structures

2017 ◽  
Author(s):  
Mohamed Abdallah El-Reedy
2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander Bulkov ◽  
Michail Baev ◽  
Igor Ovchinnikov

The influence of reinforcing steel corrosion on the durability of reinforced concrete structures of transport structures and the degree of knowledge of this problem is considered. It is specified that the protection of reinforcing steel from corrosion is not able to completely replace the correct design and use of high-strength concrete. But it is able to extend the life of reinforced concrete structures. It is noted that corrosion of the reinforcement leads to a decrease in the structural strength due to wear and tear and by a third of the period of operation of reinforced concrete structures, as a result of which transport structures collapse. As an example of the detrimental effect of corrosion of reinforcing steel on the durability of transport structures, examples of accidents of bridges and overpasses caused by this type of corrosion are given. As a result, a conclusion is drawn on the advisability of ensuring a sufficient level of corrosion protection of reinforcing steel to achieve the required durability of reinforced concrete structures of transport structures. The types and causes of corrosion processes in reinforcing steel reinforced concrete structures are described. The compositions and technologies of anticorrosive protection are examined and analyzed. Comparison of the compositions of anticorrosive protection of reinforced concrete structures is carried out according to the following criteria: consumption, density, viability, curing temperature and the number of components of the composition. A comparison of anti-corrosion protection technologies is carried out on the basis of the following indicators: line dimensions, productivity and consumption of energy resources. A comparison is also made of the cost of using various anti-corrosion protection technologies. Based on the data obtained, the advantages and disadvantages of the considered compositions and technologies of corrosion protection are determined. As a result, the most effective and technologically advanced method of corrosion protection of steel reinforcement of reinforced concrete structures of transport structures is selected.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 370 ◽  
Author(s):  
Oleksandr Semko ◽  
Viktor Dariienko ◽  
Vitaliy Sirobaba

The calculation, modeling and experimental research of steel-concrete tubular elements made of thin-walled galvanized sheet metal and lightweight concrete have been carried out. The proposed type of structures can be used as a separate structure in the form of a column or a pillar, and one of the types of the reinforcement of a certain light structure. The basic technological and constructive requirements for manufacturing and further exploitation of structures are given. For determination of actual work’s indexes of constructions experimental research of standards are undertaken, and recommendations on adjustment of well-known calculation formulas of close constructions as for structural parameters are given. The design (modeling) was performed in MSC / Nastran software. An analysis of the proposed structures use is carried out with the corresponding conclusions. 


Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 20
Author(s):  
Lenting ◽  
Orlowsky

Sustainable maintenance of existing steel-reinforced concrete structures becomes more important. Using non-reinforced sprayed mortar to maintain these structures often leads to cracks in this repair layer due to the alteration of crack widths in the ordinary structure. The water impermeability as well as the durability of the sprayed mortar will be reduced due to the described cracks. This presentation shows a solution for the described problem. The use of carbon yarns with a special inorganic coating as reinforcement in sprayed mortars leads to a self-healing of the arising cracks. Due to the inorganic coating applied on carbon yarns the excellent bond between mortar and yarn results in a fine distributed crack image with crack width below 0.1 mm. It is shown that these cracks heal themselves. Consequently we can provide a mainly mineral protection layer for existing steel reinforced concrete structures which is impermeably to water based solutions. The presentation focuses on the material development and characterization.


Author(s):  
Md Daniyal ◽  
Sabih Akhtar

The steel reinforced concrete structures perform well in various environmental conditions, but structures may undergo premature damage in aggressive environments such as marine or acidic, primarily due to steel corrosion, and substantial reduction in service life occurs. This also causes huge economical loss and create safety and environmental problems. The repair and maintenance of steel reinforced concrete structures for their safety needs effective monitoring and inspection systems for evaluating the corrosion condition of steel. Since the corrosion of steel reinforcement occurs through electrochemical reactions, electrochemical methods are suitable to study the corrosion processes. In this chapter, some commonly used electrochemical techniques have been comprehensively explained. In addition, there is a critical requirement to develop effective and long-lasting techniques to control the corrosion of steel. Hence, some of the commonly used corrosion control methods have been comprehensively described in this chapter.


The problems considered within the frame of scientific and technical support are shown on the example of design and construction of a unique high-rise building of "Lakhta Center" in St. Petersburg. The main results of design support and construction of steel, steel-reinforced concrete structures, as well as structures made of laminated glass are presented. The main reason for atypical design and technological solutions for steel structures are thickness of rolled steel and the material of structures non-standard for domestic practice. In addition, there was no normative approach to the design of steel-reinforced concrete structures and structures made of laminated glass at the time of design of the complex. The tests carried out within the scientific and technical support provided the necessary information for the design of unique structures. It is required to develop the set of rules defining the requirements for scientific research when constructing unique objects for a more orderly scientific and technical support and justification of the amount of work performed.


Sign in / Sign up

Export Citation Format

Share Document