Prediction of sand wave migration with a non-linear spectral model

Author(s):  
A Smale ◽  
R Bijker ◽  
G Klopman
Author(s):  
Ken P. Games ◽  
David I. Gordon

ABSTRACTSand waves are well known indicators of a mobile seabed. What do we expect of these features in terms of migration rates and seabed scour? We discuss these effects on seabed structures, both for the Oil and Gas and the Windfarm Industries, and consider how these impact on turbines and buried cables. Two case studies are presented. The first concerns a windfarm with a five-year gap between the planning survey and a subsequent cable route and environmental assessment survey. This revealed large-scale movements of sand waves, with the displacement of an isolated feature of 155 m in five years. Secondly, another windfarm development involved a re-survey, again over a five-year period, but after the turbines had been installed. This showed movements of sand waves of ∼50 m in five years. Observations of the scour effects on the turbines are discussed. Both sites revealed the presence of barchans. Whilst these have been extensively studied on land, there are few examples of how they behave in the marine environment. The two case studies presented show that mass transport is potentially much greater than expected and that this has implications for choosing turbine locations, the effect of scour, and the impact these sediment movements are likely to have on power cables.


2016 ◽  
Vol 376 ◽  
pp. 102-108 ◽  
Author(s):  
Kai Zhang ◽  
Fanlin Yang ◽  
Chunxia Zhao ◽  
Chengkai Feng

2020 ◽  
Author(s):  
Yin-Hsuan Liao ◽  
Ho-Han Hsu ◽  
Jyun-Nai Wu ◽  
Tzu-Ting Chen ◽  
Eason Yi-Cheng Yang ◽  
...  

<p>        Submarine sand waves are known to be induced by tidal currents and their migration has become an important issue since it may affect seafloor installations. In Taiwan Strait, widely spreading sand waves have been recognized on the Changyun Ridge, a tide-dominated giant sand ridge offshore western Taiwan. However, due to lacking of high-resolution and repeated geophysical surveys before, detailed characteristics and migrating features of the sand waves in Taiwan Strait were poorly understood. As new multibeam bathymetric and seismic data were collected repeatedly during 2016 - 2018 for offshore wind farm projects, we can now advance the understanding of sand wave characteristics and migration patterns in the study area. We apply a geostatistical analysis method on bathymetry data to reveal distribution and spatial characteristics of the sand waves, and estimate its migration pattern by using an updated spatial cross-correlation method. Then, sedimentary features, internal structures and thicknesses of sand waves are observed and estimated on high-resolution seismic profiles. Our results show that the study area is mostly superimposed by multi-scaled sandy rhythmic bed forms. However, the geomorphological and migrating characteristics of the sand waves are complicated. Their wavelengths range from 80 to 200 m, heights range from 1.5 to 8 m, and crests are generally oriented in the WNW-ESE direction. Obvious sand wave migration was detected from repeated high-resolution multi-beam data between 2016 and 2018, and migration distances can be up to ~150 m in 15 months. The average elevation change of the seafloor over the whole survey area is ~3.0 m, with a maximum value of 6.9 m. Moreover, the sand waves can migrate over 30 m with ~2.5 m elevation change in 2 months and migrate over 5 m with ~1 m elevation change in 15 days. The results also show that the orientation of wave movement can be reversed even within a small distance. By identifying the base of sand wave on seismic profiles, the thicknesses of sand waves are found ranging from 1 to 10 meters. The base of wave structure become slightly deeper from nearshore to offshore. Our results indicate that the thickness of sand waves increases with degree of asymmetry and migration rate. By bathymetric and reflection seismic data analyses, systematic spatial information of sand waves in the study area are established, and we suggest that not only tidal currents can affect sand wave migration patterns, but also wave structures and thicknesses play important roles in sand wave migrating processes and related geomorphological changes.</p>


2011 ◽  
Vol 23 (4) ◽  
pp. 439-446 ◽  
Author(s):  
Yong Li ◽  
Mian Lin ◽  
Wen-bing Jiang ◽  
Feng-xin Fan

Sign in / Sign up

Export Citation Format

Share Document