sand waves
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 40)

H-INDEX

34
(FIVE YEARS 2)

2022 ◽  
pp. 106728
Author(s):  
Deniz Cukur ◽  
Gee-Soo Kong ◽  
David M. Buchs ◽  
Gwang-Soo Lee ◽  
Seong-Pil Kim ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. 211-219
Author(s):  
Yong Jun Cho

A physics-based morphology model [Seoul Foam] was developed using the dynamic mesh technique to explain the interaction between the sea bed, which undergoes deformation due to siltation and scouring, and the incoming waves. In doing so, OlaFlow, an Open Foam-based toolbox, was used as a hydrodynamic model. To verify the proposed physically-based morphology [Seoul Foam] in this study, numerical simulations of the shoaling process over the beach of the uniform slope were implemented. The numerical result shows that the formation process of a sand bar over the foreshore was successfully simulated. As can be easily anticipated, the size of the sand bar was closely linked to the nature of incoming waves, and in the case of a rough sea, the foreshore slope was rapidly deformed due to scouring. In mild seas, several sand waves were formed near the shoreline, and when the exposure time was the same, the size of the sand waves was not as large as in rough seas.


2021 ◽  
Vol 9 (10) ◽  
pp. 1071
Author(s):  
Janneke Krabbendam ◽  
Abdel Nnafie ◽  
Huib de Swart ◽  
Bas Borsje ◽  
Luitze Perk

This study focuses on the hindcasting and forecasting of observed offshore tidal sand waves by using a state-of-the-art numerical morphodynamic model. The sand waves, having heights of several meters, evolve on timescales of years. Following earlier work, the model has a 2DV configuration (one horizontal and one vertical direction). First, the skill of the model is assessed by performing hindcasts at four transects in the North Sea where sand wave data are available of multiple surveys that are at least 10 years apart. The first transect is used for calibration and this calibrated model is applied to the other three transects. It is found that the calibrated model performs well: the Brier Skill Score is ’excellent’ at the first two transects and ’good’ at the last two. The root mean square error of calculated bed levels is smaller than the uncertainty in the measurements, except at the last transect, where the M2 is more elliptical than at the other three transects. The calibrated model is subsequently used to make forecasts of the sand waves along the two transects with the best skill scores.


Author(s):  
Subhasish Dey ◽  
Rajesh K. Mahato ◽  
Sk Zeeshan Ali

2021 ◽  
Vol 33 (4) ◽  
pp. 168-178
Author(s):  
Yong Jun Cho

Numerical simulations were implemented to look into the modified seabed topography due to the presence of breakwaters of varying reflection characteristics. The numerical model was composed of OlaFlow, an OpenFoam-based tool box, and a physics-based morphology model [Seoul Foam]. In doing so, the interaction between the seabed, which undergoes deformation due to siltation and scouring, and the incoming waves was described using Dynamic Mesh. The rubble-mound, vertical, and curved slit caisson breakwaters with varying reflection characteristics resulted in standing waves that differ from each other, shown to have a significant influence on the seabed topography. These results are in line with Nielsen’s study (1993) that sands saltated under the surface nodes of standing waves, where the near-bed velocities are most substantial, convected toward the surface antinodes by boundary-layer drift. Moreover, the crest of sand waves was formed under the surface antinodes of standing waves, and the trough of sand waves was formed under the surface antinodes. In addition, sand wave amplitude reaches its peak in the curved slit caisson with a significant reflection coefficient, and the saltation of many grains of sand would cause this phenomenon due to the increased near-bed velocity under the nodes when the reflection coefficient is getting large.


2021 ◽  
Vol 13 (16) ◽  
pp. 3313
Author(s):  
Yujin Zhao ◽  
Liaoying Zhao ◽  
Huaguo Zhang ◽  
Bin Fu

Shallow underwater topography has important practical applications in fisheries, navigation, and pipeline laying. Traditional multibeam bathymetry is limited by the high cost of largescale topographic surveys in large, shallow sand wave areas. Remote sensing inversion methods to detect shallow sand wave topography in Taiwan rely heavily on measured water depth data. To address these problems, this study proposes a largescale remote sensing inversion model of sand wave topography based on long short-term memory network machine learning. Using multi-angle sun glitter remote sensing to obtain sea surface roughness (SSR) information and by learning and training SSR and its corresponding water depth information, the sand wave topography of a largescale shallow sea sand wave region is extracted. The accuracy of the model is validated through its application to a 774 km2 area in the sand wave topography of the Taiwan Banks. The model obtains a root mean square error of 3.31–3.67 m, indicating that the method has good generalization capability and can achieve a largescale topographic understanding of shallow sand waves with some training on measured bathymetry data. Sand wave topography is widely present in tidal environments; our method has low requirements for ground data, with high application value.


2021 ◽  
Vol 8 (3) ◽  
pp. 151-163
Author(s):  
Yong Jun Cho

Among the many scouring-protection works near a rubble mound breakwater, stacking armoring rocks in multiple or single layers are most popular. The rationale of these scouring-protection works is based on the Equilibrium regime or the maximum scouring depth. However, considering natural beaches, which constantly change their shape according to sea waves conditions, the equilibrium regime or the maximum scouring depth mentioned above seems to foot on the fragile physical background. In this study, in order to test the above hypothesis, numerical simulations were carried out on the partial reflection from the slopes of rubble mound breakwater, and its ensuing standing waves formed in the front seas of a breakwater, the change in the bed profiles due to the formation of standing waves, and scouring depth at the base of a rubble mound breakwater. In doing so, numerical simulations were implemented using OlaFoam, an OpenFoam-based toolbox, and SeoulFoam (Cho, 2020), a physics-based morphology model. Numerical results show that the wave length of sand waves is closely linked with the incoming wave period, while amplitudes of sand waves are determined by incoming wave height. Moreover, the seabed profiles underwent significant changes due to the presence of a rubble mound breakwater. It was shown that the size of sand waves increased when compared before the installation, and the shape of sand waves is getting skewed toward the shore direction. It was also shown that as exposure time to standing waves increased, the amplitude of sand waves also increased, and the scouring depth near the base of a breakwater increased. These results are contrary to the Equilibrium regime, and the scouring prevention works based on the stacking of armoring rocks should be re-evaluated.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3943
Author(s):  
Christelle Auguste ◽  
Philip Marsh ◽  
Jean-Roch Nader ◽  
Irene Penesis ◽  
Remo Cossu

Banks Strait, Tasmania, Australia, has been identified as a potential site for the deployment of tidal turbines. In this study, the characterization of sediment transport and large sand waves for this site is performed. Observations of bed level change collected from surveys in 2018 showed a migration of large sand waves over a period of nine months. Migration rates in an excess of one hundred meters for nine months were found, which are large compared to the rate reported at other coastal sites, by several meters per year. A validated hydrodynamic model is coupled with a morphodynamic model to perform sensitivity tests and identify what parameters influence migration to better understand sediment dynamic in the Banks Strait. Numerical analysis showed a constant shift of the sand waves profile in an eastward direction, consistent with the observations. This migration was strongly linked with tidal asymmetry, with a residual current flowing towards the east. The principal parameters driving the migration of sand waves in the Banks Strait were found to be sediment sorting, bed friction and residual current. This study gives new insights for the seabed of Banks Strait and provides an assessment of the natural variability of sediment for futures tidal farms deployments.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3283
Author(s):  
Rui Nian ◽  
Lina Zang ◽  
Xue Geng ◽  
Fei Yu ◽  
Shidong Ren ◽  
...  

Sand waves constitute ubiquitous geomorphology distribution in the ocean. In this paper, we quantitatively investigate the sand wave variation of topology, morphology, and evolution from the high-resolution mapping of a side scan sonar (SSS) in an Autonomous Underwater Vehicle (AUV), in favor of online sequential Extreme Learning Machine (OS-ELM). We utilize echo intensity directly derived from SSS to help accelerate detection and localization, denote a collection of Gaussian-type morphological templates, with one integrated matching criterion for similarity assessment, discuss the envelope demodulation, zero-crossing rate (ZCR), cross-correlation statistically, and estimate the specific morphological parameters. It is demonstrated that the sand wave detection rate could reach up to 95.61% averagely, comparable to deep learning such as MobileNet, but at a much higher speed, with the average test time of 0.0018 s, which is particularly superior for sand waves at smaller scales. The calculation of morphological parameters primarily infer a wave length range and composition ratio in all types of sand waves, implying the possible dominant direction of hydrodynamics. The proposed scheme permits to delicately and adaptively explore the submarine geomorphology of sand waves with online computation strategies and symmetrically integrate evidence of its spatio-temporal responses during formation and migration.


2021 ◽  
Author(s):  
Chiu H. Cheng ◽  
Bas W. Borsje ◽  
Olivier Beauchard ◽  
Sarah O'Flynn ◽  
Tom Ysebaert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document