scholarly journals POLYCYSTIC OVARIES AND GLUCOSETOLERANCE IN HEPATIC GLYCOGEN STORAGE DISEASE

1993 ◽  
Vol 33 ◽  
pp. S14-S14 ◽  
Author(s):  
P I Lee ◽  
A Patel ◽  
P C Hindmarsh ◽  
C G D Brook ◽  
J V Leonard
Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1205
Author(s):  
Sarah Catharina Grünert ◽  
Luciana Hannibal ◽  
Ute Spiekerkoetter

Glycogen storage disease type VI (GSD VI) is an autosomal recessive disorder of glycogen metabolism due to mutations in the glycogen phosphorylase gene (PYGL), resulting in a deficiency of hepatic glycogen phosphorylase. We performed a systematic literature review in order to collect information on the clinical phenotypes and genotypes of all published GSD VI patients and to compare the data to those for GSD IX, a biochemically and clinically very similar disorder caused by a deficiency of phosphorylase kinase. A total of 63 genetically confirmed cases of GSD VI with clinical information were identified (median age: 5.3 years). The age at presentation ranged from 5 weeks to 38 years, with a median of 1.8 years. The main presenting symptoms were hepatomegaly and poor growth, while the most common laboratory findings at initial presentation comprised elevated activity of liver transaminases, hypertriglyceridemia, fasting hypoglycemia and postprandial hyperlactatemia. Liver biopsies (n = 37) showed an increased glycogen content in 89.2%, liver fibrosis in 32.4% and early liver cirrhosis in 10.8% of cases, respectively. No patient received a liver transplant, and one successful pregnancy was reported. Our review demonstrates that GSD VI is a disorder with broad clinical heterogeneity and a small number of patients with a severe phenotype and liver cirrhosis. Neither clinical nor laboratory findings allow for a differentiation between GSD VI and GSD IX. Early biochemical markers of disease severity or clear genotype phenotype correlations are missing. Given the overall benign and unspecific phenotype and the need for enzymatic or genetic analyses for confirmation of the diagnosis, GSD VI is likely underdiagnosed. With new treatment approaches in sight, early, pre-symptomatic diagnosis, especially with respect to hepatic cirrhosis, will become even more important.


PEDIATRICS ◽  
1965 ◽  
Vol 36 (6) ◽  
pp. 956-956
Author(s):  
Smilja Jakovcic ◽  
Walter Fuhrmann ◽  
David Yi-Yung Hsia

In the April 1959 issue of this journal, under the title of "An Inborn Error of Lipid Metabolsim, "clinical studies were reported on two brothers with hyperlipidemia.1 Although these children presented several of the clinical and laboratory manifestations on glycogen storage disease of Von Gierke's type, this diagnosis was ruled out when histological examination of two liver biopsies done on one of the children at a three year's interval were reported as containing low or normal amounts of hepatic glycogen.


2013 ◽  
Vol 58 (5) ◽  
pp. 285-292 ◽  
Author(s):  
Jun Kido ◽  
Kimitoshi Nakamura ◽  
Shirou Matsumoto ◽  
Hiroshi Mitsubuchi ◽  
Toshihiro Ohura ◽  
...  

2019 ◽  
Vol 29 (2) ◽  
pp. 286-294 ◽  
Author(s):  
Zollie A Yavarow ◽  
Hye-Ri Kang ◽  
Lauren R Waskowicz ◽  
Boon-Huat Bay ◽  
Sarah P Young ◽  
...  

Abstract Glycogen storage disease type Ia (GSD Ia) is caused by autosomal mutations in glucose-6-phosphatase α catalytic subunit (G6PC) and can present with severe hypoglycemia, lactic acidosis and hypertriglyceridemia. In both children and adults with GSD Ia, there is over-accumulation of hepatic glycogen and triglycerides that can lead to steatohepatitis and a risk for hepatocellular adenoma or carcinoma. Here, we examined the effects of the commonly used peroxisomal proliferated activated receptor α agonist, fenofibrate, on liver and kidney autophagy and lipid metabolism in 5-day-old G6pc −/− mice serving as a model of neonatal GSD Ia. Five-day administration of fenofibrate decreased the elevated hepatic and renal triglyceride and hepatic glycogen levels found in control G6pc −/− mice. Fenofibrate also induced autophagy and promoted β-oxidation of fatty acids and stimulated gene expression of acyl-CoA dehydrogenases in the liver. These findings show that fenofibrate can rapidly decrease hepatic glycogen and triglyceride levels and renal triglyceride levels in neonatal G6pc −/− mice. Moreover, since fenofibrate is an FDA-approved drug that has an excellent safety profile, our findings suggest that fenofibrate could be a potential pharmacological therapy for GSD Ia in neonatal and pediatric patients as well as for adults. These findings may also apply to non-alcoholic fatty liver disease, which shares similar pathological and metabolic changes with GSD Ia.


1995 ◽  
Vol 269 (4) ◽  
pp. E774-E778 ◽  
Author(s):  
K. I. Rother ◽  
W. F. Schwenk

Children with glycogen storage disease type I (GSD I) lack the ability to convert glucose 6-phosphate to glucose and yet are able to produce glucose endogenously. To test the hypothesis that the source of this glucose is increased cycling of glucose moieties through hepatic glycogen, six children with GSD I were studied on two occasions during which they received enteral glucose for 6 h at 35 or 50 mumol.kg-1.min-1 along with [6,6-2H2]glucose to measure plasma glucose flux and [1-13C]galactose to label intrahepatic uridyl diphosphate (UDP)-glucose. After 3 h, acetaminophen was given to estimate UDP-glucose flux (reflecting the rate of glycogen synthesis). Mean steady-state plasma glucose concentrations (4.8 +/- 0.2 vs. 5.8 +/- 0.1 mM) and total flux (34.8 +/- 1.7 vs. 47.5 +/- 2.0 mumol.kg-1.min-1) were increased (P < 0.05 or better) on the high-infusion day. Endogenous glucose production was detectable only on the low-infusion day (2.0 +/- 0.5 mumol.kg-1.min-1). UDP-glucose flux was increased (P < 0.05) on the high-infusion day (25.8 +/- 1.6 vs. 34.7 +/- 4.1), ruling out cycling of glucose moieties through glycogen with release of glucose by debrancher enzyme as the source of glucose production.


Sign in / Sign up

Export Citation Format

Share Document