scholarly journals Studies on Tolfenamic Acid–Chitosan Intermolecular Interactions: Effect of pH, Polymer Concentration and Molecular Weight

2013 ◽  
Vol 14 (2) ◽  
pp. 870-879 ◽  
Author(s):  
Sofia Ahmed ◽  
Muhammad Ali Sheraz ◽  
Ihtesham Ur Rehman
2017 ◽  
Vol 812 ◽  
pp. 1076-1118 ◽  
Author(s):  
S. S. Srinivas ◽  
V. Kumaran

The modification of soft-wall turbulence in a microchannel due to small amounts of polymer dissolved in water is experimentally studied. The microchannels are of rectangular cross-section with height ${\sim}$160 $\unicode[STIX]{x03BC}\text{m}$, width ${\sim}$1.5 mm and length ${\sim}$3 cm, with three walls made of hard polydimethylsiloxane (PDMS) gel, and one wall made of soft PDMS gel with an elasticity modulus of ${\sim}$18 kPa. Solutions of polyacrylamide of molecular weight $5\times 10^{6}$ and mass fraction up to 50 ppm, and of molecular weight $4\times 10^{4}$ and mass fraction up to 1500 ppm, are used in the experiments. In all cases, the solutions are in the dilute limit below the critical overlap concentration, and the solution viscosity does not exceed that of water by more than 10 %. Two distinct types of flow modifications are observed below and above a threshold mass fraction for the polymer, $w_{t}$, which is ${\sim}$1 ppm and 500 ppm for the solutions of polyacrylamide with molecular weights $5\times 10^{6}$ and $4\times 10^{4}$, respectively. At or below $w_{t}$, there is no change in the transition Reynolds number, but there is significant turbulence attenuation, by up to a factor of 2 in the root-mean-square velocities and a factor of 4 in the Reynolds stress. When the polymer concentration increases beyond $w_{t}$, there is a decrease in the transition Reynolds number and in the intensity of the turbulent fluctuations. The lowest transition Reynolds number is ${\sim}$35 for the solution of polyacrylamide with molecular weight $5\times 10^{6}$ and mass fraction 50 ppm (in contrast to 260–290 for pure water). The fluctuating velocities in the streamwise and cross-stream directions are lower by a factor of 5, and the Reynolds stress is lower by a factor of 10, in comparison to pure water.


1988 ◽  
Vol 22 (11) ◽  
pp. 1381-1388 ◽  
Author(s):  
Jan John ◽  
Brit Salbu ◽  
Egil T. Gjessing ◽  
Helge E. Bjørnstad

e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Kathy Vuillaume ◽  
Bassel Haidar ◽  
Alain Vidal

AbstractDisplacement of pre-adsorbed macromolecules by the same polymer, polybutadiene, of the same or of different molecular weight was studied in solution and in the bulk. The effect of polymer concentration on pre-adsorption and displacement processes was determined. Displacement was investigated by gel permeation chromatography and by determination of the amount of bound polymer before and after displacement. A conformational factor was established as a major driving force - besides molecular weight - in the displacement process. Polymer chains adsorbed in flat conformation had the highest adsorption stability and could not be displaced by any other molecular weight of the same polymer.


Author(s):  
E. J. Mossige ◽  
V. Chandran Suja ◽  
M. Islamov ◽  
S. F. Wheeler ◽  
Gerald. G. Fuller

Understanding the mechanics of detrimental convective instabilities in drying polymer solutions is crucial in many applications such as the production of film coatings. It is well known that solvent evaporation in polymer solutions can lead to Rayleigh-Bénard or Marangoni-type instabilities. Here, we reveal another mechanism, namely that evaporation can cause the interface to display Rayleigh–Taylor instabilities due to the build-up of a dense layer at the air–liquid interface. We study experimentally the onset time ( t p ) of the instability as a function of the macroscopic properties of aqueous polymer solutions, which we tune by varying the polymer concentration ( c 0 ), molecular weight and polymer type. In dilute solutions, t p shows two limiting behaviours depending on the polymer diffusivity. For high diffusivity polymers (low molecular weight), the pluming time scales as c 0 − 2 / 3 . This result agrees with previous studies on gravitational instabilities in miscible systems where diffusion stabilizes the system. On the other hand, in low diffusivity polymers the pluming time scales as c 0 − 1 . The stabilizing effect of an effective interfacial tension, similar to those in immiscible systems, explains this strong concentration dependence. Above a critical concentration, c ^ , viscosity delays the growth of the instability, allowing time for diffusion to act as the dominant stabilizing mechanism. This results in t p scaling as ( ν / c 0 ) 2/3 . This article is part of the theme issue ‘Stokes at 200 (Part 1)’.


Sign in / Sign up

Export Citation Format

Share Document