scholarly journals Evaporation-induced Rayleigh–Taylor instabilities in polymer solutions

Author(s):  
E. J. Mossige ◽  
V. Chandran Suja ◽  
M. Islamov ◽  
S. F. Wheeler ◽  
Gerald. G. Fuller

Understanding the mechanics of detrimental convective instabilities in drying polymer solutions is crucial in many applications such as the production of film coatings. It is well known that solvent evaporation in polymer solutions can lead to Rayleigh-Bénard or Marangoni-type instabilities. Here, we reveal another mechanism, namely that evaporation can cause the interface to display Rayleigh–Taylor instabilities due to the build-up of a dense layer at the air–liquid interface. We study experimentally the onset time ( t p ) of the instability as a function of the macroscopic properties of aqueous polymer solutions, which we tune by varying the polymer concentration ( c 0 ), molecular weight and polymer type. In dilute solutions, t p shows two limiting behaviours depending on the polymer diffusivity. For high diffusivity polymers (low molecular weight), the pluming time scales as c 0 − 2 / 3 . This result agrees with previous studies on gravitational instabilities in miscible systems where diffusion stabilizes the system. On the other hand, in low diffusivity polymers the pluming time scales as c 0 − 1 . The stabilizing effect of an effective interfacial tension, similar to those in immiscible systems, explains this strong concentration dependence. Above a critical concentration, c ^ , viscosity delays the growth of the instability, allowing time for diffusion to act as the dominant stabilizing mechanism. This results in t p scaling as ( ν / c 0 ) 2/3 . This article is part of the theme issue ‘Stokes at 200 (Part 1)’.

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4799
Author(s):  
Francis Kamau Mwiiri ◽  
Rolf Daniels

Triterpenes from the outer bark of birch (TE) are known for various pharmacological effects including enhanced wound healing. Apart from an already authorized oleogel, electrospun nanofiber mats containing these triterpenes in a polyvinyl alcohol (PVA) matrix appear to be an advantageous application form. The effects of PVA molecular weight and concentration on the fiber morphology have been investigated. Three different molecular weights of PVA ranging from 67 to 186 kDa were used. The concentration of PVA was varied from 5 to 20 wt%. Polymer solutions were blended with colloidal dispersions of birch bark extract at a weight ratio of 60:40 (wt.%). The estimated viscosity of polymer solutions was directly linked to their concentration and molecular weight. In addition, both pure and blended solutions showed viscoelastic properties with a dominant viscous response in the bulk. Fiber morphology was confirmed using scanning electron microscopy (SEM). Both polymer concentration and molecular weight were found to be significant factors affecting the diameter of the fibers. Fiber diameter increased with a higher molecular weight and polymer concentration as more uniform fibers were obtained using PVA of higher molecular weight (146–186 kDa). In vitro drug release and ex vivo permeation studies indicated a faster drug release of betulin from electrospun scaffolds with lower PVA molecular weight. Our research suggests that the fabricated TE-loaded PVA electrospun dressings represent potential delivery systems of TE for wound care applications.


1987 ◽  
Vol 65 (5) ◽  
pp. 990-995 ◽  
Author(s):  
Gérald Perron ◽  
Josée Francoeur ◽  
Jacques E. Desnoyers ◽  
Jan C. T. Kwak

The apparent molar volumes and heat capacities of aqueous mixtures of neutral polymers and ionic surfactants were measured at 25 °C. The polymers chosen were poly(vinylpyrrolidone) (PVP) and poly(ethyleneoxide) (PEO) and the surfactants were the C8, C10, and C12 homologs of sodium alkylsulfates and the C10, C12, and C16 homologs of alkyltrimethylammonium bromides. The polymer–surfactant interactions depend on the nature of both components and on the chain length of the surfactant. The thermodynamic properties of the cationic surfactants are essentially the same in the absence and presence of polymer indicating little surfactant–polymer interaction. On the other hand, the thermodynamic properties of anionic surfactants are shifted, upon the addition of polymers, in the direction of enhanced hydrophobic association. The effect increases with the surfactant chain length and with the polymer concentration. The effect is larger with PVP than with PEO.


Sign in / Sign up

Export Citation Format

Share Document