Fragmentation of Invasion Percolation Cluster in Two-Dimensional Porous Media

1995 ◽  
Vol 31 (3) ◽  
pp. 139-144 ◽  
Author(s):  
G Wagner ◽  
A Birovljev ◽  
P Meakin ◽  
J Feder ◽  
T Jøssang
1999 ◽  
Vol 121 (5) ◽  
pp. 480-486 ◽  
Author(s):  
O. I. Craciunescu ◽  
S. K. Das ◽  
S. T. Clegg

Dynamic contrast-enhanced magnetic resonance imaging (DE-MRI) of the tumor blood pool is used to study tumor tissue perfusion. The results are then analyzed using percolation models. Percolation cluster geometry is depicted using the wash-in component of MRI contrast signal intensity. Fractal characteristics are determined for each two-dimensional cluster. The invasion percolation model is used to describe the evolution of the tumor perfusion front. Although tumor perfusion can be depicted rigorously only in three dimensions, two-dimensional cases are used to validate the methodology. It is concluded that the blood perfusion in a two-dimensional tumor vessel network has a fractal structure and that the evolution of the perfusion front can be characterized using invasion percolation. For all the cases studied, the front starts to grow from the periphery of the tumor (where the feeding vessel was assumed to lie) and continues to grow toward the center of the tumor, accounting for the well-documented perfused periphery and necrotic core of the tumor tissue.


1995 ◽  
Vol 51 (6) ◽  
pp. 5911-5915 ◽  
Author(s):  
Aleksandar Birovljev ◽  
Geri Wagner ◽  
Paul Meakin ◽  
Jens Feder ◽  
Torstein Jøssang

1999 ◽  
Vol 2 (3) ◽  
pp. 251-262
Author(s):  
P. Gestoso ◽  
A. J. Muller ◽  
A. E. Saez

2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


2018 ◽  
Vol 3 (10) ◽  
Author(s):  
Bauyrzhan K. Primkulov ◽  
Stephen Talman ◽  
Keivan Khaleghi ◽  
Alireza Rangriz Shokri ◽  
Rick Chalaturnyk ◽  
...  

2020 ◽  
Vol 12 (8) ◽  
pp. 168781402093046 ◽  
Author(s):  
Noor Saeed Khan ◽  
Qayyum Shah ◽  
Arif Sohail

Entropy generation in bioconvection two-dimensional steady incompressible non-Newtonian Oldroyd-B nanofluid with Cattaneo–Christov heat and mass flux theory is investigated. The Darcy–Forchheimer law is used to study heat and mass transfer flow and microorganisms motion in porous media. Using appropriate similarity variables, the partial differential equations are transformed into ordinary differential equations which are then solved by homotopy analysis method. For an insight into the problem, the effects of various parameters on different profiles are shown in different graphs.


2021 ◽  
pp. 105013
Author(s):  
Yuxuan Xia ◽  
Wei Wei ◽  
Yang Liu ◽  
Zhongxian Cai ◽  
Qi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document