Surface roughness of peeled adhesive tape: A mystery?

2010 ◽  
Vol 92 (4) ◽  
pp. 46001 ◽  
Author(s):  
B. N. J. Persson ◽  
A. Kovalev ◽  
M. Wasem ◽  
E. Gnecco ◽  
S. N. Gorb
Author(s):  
Zdzisław Kaliniewicz ◽  
Zbigniew Żuk ◽  
Zbigniew Krzysiak

The aim of this study was to determine the correlation between the external friction angle of cereal kernels and the roughness of a steel friction plate. The experiment was performed on the kernels of five principal cereals: wheat, rye, barley, oats and triticale. Flat seed units composed of three spaced kernels joined by adhesive tape were analyzed in each experimental variant. The external friction angle of flat seed units was determined on 9 steel friction plates with different roughness. Measurements were performed in 3 replications with a photosensor device which registered the external friction angle of cereal kernels. On friction plates with surface roughness Ra=0.36 to Ra=6.72, the average values of the angle of external friction ranged from 17.56° in rye kernels to 34.01° in oat kernels. The greatest similarities in the angle of external friction were observed between wheat and triticale kernels, whereas the greatest differences were noted between barley and oat kernels and between barley and triticale kernels. Friction plates made of ST3S steel should be characterized by the lowest surface roughness to minimize energy consumption during grain processing. The optimal surface roughness of steel friction plates was determined at Ra=0.9.


Author(s):  
Zdzisław Kaliniewicz ◽  
Zbigniew Żuk ◽  
Zbigniew Krzysiak

The aim of this study was to determine the correlation between the external friction angle of cereal kernels and the roughness of a steel friction plate. The experiment was performed on the kernels of five principal cereals: wheat, rye, barley, oats and triticale. Flat seed units composed of three spaced kernels joined by adhesive tape were analyzed in each experimental variant. The external friction angle of flat seed units was determined on 9 steel friction plates with different roughness. Measurements were performed in 3 replications with a photosensor device which registered the external friction angle of cereal kernels. On friction plates with surface roughness Ra=0.36 to Ra=6.72, the average values of the angle of external friction ranged from 17.56° in rye kernels to 34.01° in oat kernels. The greatest similarities in the angle of external friction were observed between wheat and triticale kernels, whereas the greatest differences were noted between barley and oat kernels and between barley and triticale kernels. Friction plates made of ST3S steel should be characterized by the lowest surface roughness to minimize energy consumption during grain processing. The optimal surface roughness of steel friction plates was determined at Ra=0.9.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1699
Author(s):  
Chander Prakash ◽  
Alokesh Pramanik ◽  
Animesh K. Basak ◽  
Yu Dong ◽  
Sujan Debnath ◽  
...  

In the present research work, an effort has been made to explore the potential of using the adhesive tapes while drilling CFRPs. The input parameters, such as drill bit diameter, point angle, Scotch tape layers, spindle speed, and feed rate have been studied in response to thrust force, torque, circularity, diameter error, surface roughness, and delamination occurring during drilling. It has been found that the increase in point angle increased the delamination, while increase in Scotch tape layers reduced delamination. The surface roughness decreased with the increase in drill diameter and point angle, while it increased with the speed, feed rate, and tape layer. The best low roughness was obtained at 6 mm diameter, 130° point angle, 0.11 mm/rev feed rate, and 2250 rpm speed at three layers of Scotch tape. The circularity error initially increased with drill bit diameter and point angle, but then decreased sharply with further increase in the drill bit diameter. Further, the circularity error has non-linear behavior with the speed, feed rate, and tape layer. Low circularity error has been obtained at 4 mm diameter, 118° point angle, 0.1 mm/rev feed rate, and 2500 RPM speed at three layers of Scotch tape. The low diameter error has been obtained at 6 mm diameter, 130° point angle, 0.12 mm/rev feed rate, and 2500 rpm speed at three layer Scotch tape. From the optical micro-graphs of drilled holes, it has been found that the point angle is one of the most effective process parameters that significantly affects the delamination mechanism, followed by Scotch tape layers as compared to other parameters such as drill bit diameter, spindle speed, and feed rate.


2009 ◽  
Vol 76-78 ◽  
pp. 94-100 ◽  
Author(s):  
Kazuhito Ohashi ◽  
Y. Sumimoto ◽  
Y. Fujita ◽  
Shinya Tsukamoto

The grindactivity of wheel is remarkably lost by the loading of wheel surface in dry grinding of hard carbon parts. In this report, we propose the dressless wheel treatment, in which loading chips are removed with adhesive tape, and experimentally investigate its effect on recovery of grindactivity, analyzing the stock removal, the grinding current and the surface roughness in repeat of grinding cycle with treated and non-treated wheels. The removal and finishing performances of loaded wheel are recovered by the dressless wheel treatment.


Author(s):  
László G. Kömüves

Light microscopic immunohistochemistry based on the principle of capillary action staining is a widely used method to localize antigens. Capillary action immunostaining, however, has not been tested or applied to detect antigens at the ultrastructural level. The aim of this work was to establish a capillary action staining method for localization of intracellular antigens, using colloidal gold probes.Post-embedding capillary action immunocytochemistry was used to detect maternal IgG in the small intestine of newborn suckling piglets. Pieces of the jejunum of newborn piglets suckled for 12 h were fixed and embedded into LR White resin. Sections on nickel grids were secured on a capillary action glass slide (100 μm wide capillary gap, Bio-Tek Solutions, Santa Barbara CA, distributed by CMS, Houston, TX) by double sided adhesive tape. Immunolabeling was performed by applying reagents over the grids using capillary action and removing reagents by blotting on filter paper. Reagents for capillary action staining were from Biomeda (Foster City, CA). The following steps were performed: 1) wet the surface of the sections with automation buffer twice, 5 min each; 2) block non-specific binding sites with tissue conditioner, 10 min; 3) apply first antibody (affinity-purified rabbit anti-porcine IgG, Sigma Chem. Co., St. Louis, MO), diluted in probe diluent, 1 hour; 4) wash with automation buffer three times, 5 min each; 5) apply gold probe (goat anti-rabbit IgG conjugated to 10 nm colloidal gold, Zymed Laboratories, South San Francisco, CA) diluted in probe diluent, 30 min; 6) wash with automation buffer three times, 5 min each; 7) post-fix with 5% glutaraldehyde in PBS for 10 min; 8) wash with PBS twice, 5 min each; 9) contrast with 1% OSO4 in PBS for 15 min; 10) wash with PBS followed by distilled water for5 min each; 11) stain with 2% uranyl acetate for 10 min; 12) stain with lead citrate for 2 min; 13) wash with distilled water three times, 1 min each. The glass slides were separated, and the grids were air-dried, then removed from the adhesive tape. The following controls were used to ensure the specificity of labeling: i) omission of the first antibody; ii) normal rabbit IgG in lieu of first antibody; iii) rabbit anti-porcine IgG absorbed with porcine IgG.


Author(s):  
I. H. Musselman ◽  
R.-T. Chen ◽  
P. E. Russell

Scanning tunneling microscopy (STM) has been used to characterize the surface roughness of nonlinear optical (NLO) polymers. A review of STM of polymer surfaces is included in this volume. The NLO polymers are instrumental in the development of electrooptical waveguide devices, the most fundamental of which is the modulator. The most common modulator design is the Mach Zehnder interferometer, in which the input light is split into two legs and then recombined into a common output within the two dimensional waveguide. A π phase retardation, resulting in total light extinction at the output of the interferometer, can be achieved by changing the refractive index of one leg with respect to the other using the electrooptic effect. For best device performance, it is essential that the NLO polymer exhibit minimal surface roughness in order to reduce light scattering. Scanning tunneling microscopy, with its high lateral and vertical resolution, is capable of quantifying the NLO polymer surface roughness induced by processing. Results are presented below in which STM was used to measure the surface roughness of films produced by spin-coating NLO-active polymers onto silicon substrates.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


Sign in / Sign up

Export Citation Format

Share Document