A fast insight into the nonlinear oscillation of nano-electro mechanical resonators considering the size effect and the van der Waals force

Author(s):  
Kang-Jia Wang

Abstract Nano/micro actuators are widely used in micro/ nano electro mechanical systems (NEMS/MEMS) and the study on its nonlinear oscillation is of great significance. This paper begins with a wrong variational principle ([19] Appl Nanosci, 2016, 6: 309-317) of the reduced governing partial differential equation of the resonator which is used to describe the nonlinear oscillation of nano-electro mechanical resonators that takes into account the size effect and the van der Waals force. By using the Semi-inverse method, we establish the genuine variational principle. Then a simple method so called He’s frequency formulation is applied to solve the problem, where it only needs one-step to get the approximate amplitude-frequency relationship. Comparing with the existing method, it shows that the proposed method is simple but effective, which is helpful to be of significance to the study of the nonlinear oscillation in micro/nano electro mechanical systems.

Author(s):  
Guang-Qing Feng

Nonlinear oscillation is an increasingly important and extremely interesting topic in engineering. This article completely reviews a simple method proposed by Ji-Huan He and successfully establishes a fractal undamped Duffing equation through the two-scale fractal derivative in a fractal space. Its variational principle is established, and the two-scale transform method and the fractal frequency formula are adopted to find the approximate frequency of the fractal oscillator. The numerical result shows that He’s frequency formula is a unique tool for the fractal equations.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 941
Author(s):  
Zhanyong Zhao ◽  
Shijie Chang ◽  
Jie Wang ◽  
Peikang Bai ◽  
Wenbo Du ◽  
...  

The bonding strength of a Gr/Mg2Si interface was calculated by first principles. Graphene can form a stable, completely coherent interface with Mg2Si. When the (0001) Gr/(001) Mg2Si crystal plane is combined, the mismatch degree is 5.394%, which conforms to the two-dimensional lattice mismatch theory. At the interface between Gr/Mg2Si, chemical bonds were not formed, there was only a strong van der Waals force; the interfaces composed of three low index surfaces (001), (011) and (111) of Mg2Si and Gr (0001) have smaller interfacial adhesion work and larger interfacial energy, the interfacial energy of Gr/Mg2Si is much larger than that of α-Al/Al melt and Gr/Al interfacial (0.15 J/m2, 0.16 J/m2), and the interface distance of a stable interface is larger than the bond length of a chemical bond. The interface charge density difference diagram and density of states curve show that there is only strong van der Waals force in a Gr/Mg2Si interface. Therefore, when the Gr/AlSi10Mg composite is stressed and deformed, the Gr/Mg2Si interface in the composite is easy to separate and become the crack propagation source. The Gr/Mg2Si interface should be avoided in the preparation of Gr/AlSi10Mg composite.


Langmuir ◽  
2009 ◽  
Vol 25 (18) ◽  
pp. 10612-10623 ◽  
Author(s):  
Ravi P. Jaiswal ◽  
Gautam Kumar ◽  
Caitlin M. Kilroy ◽  
Stephen P. Beaudoin

Sign in / Sign up

Export Citation Format

Share Document