scholarly journals Menopausal Increases in Pulsatile Gonadotropin-Releasing Hormone Release in a Nonhuman Primate (Macaca mulatta)

Endocrinology ◽  
2004 ◽  
Vol 145 (10) ◽  
pp. 4653-4659 ◽  
Author(s):  
Andrea C. Gore ◽  
Bret M. Windsor-Engnell ◽  
Ei Terasawa

Abstract Reproductive function in all vertebrates is controlled by the circhoral release of the neuropeptide, GnRH, into the portal capillary system leading to the anterior pituitary. Despite its primary role in sexual maturation and the maintenance of adult reproductive function, changes in the concentrations and pattern of GnRH release have not yet been reported in any primate species during the menopausal transition and postmenopause. Such knowledge is essential for ascertaining both the mechanisms for, and consequences of, the menopausal process. Here we used a push-pull perfusion method to measure and compare the parameters of pulsatile GnRH release in adult rhesus monkeys at 8.4 ± 1.5 yr (young adult females, early follicular phase, n = 6) and 28.8 ± 0.3 yr (aged females, n = 4, of which two monkeys were in the menopausal transition, and two were postmenopausal). Our results demonstrate that: 1) GnRH release is pulsatile in both young and aged monkeys; 2) mean concentrations of GnRH increase during reproductive aging; and 3) GnRH pulse frequency does not differ between aged monkeys and young monkeys in the early follicular phase. We conclude that not only do GnRH neurons have the continued capacity to release GnRH in a pulsatile manner but also they can do so with enhanced GnRH levels in aged primates. To our knowledge, this is the first direct demonstration of elevated pulsatile GnRH concentrations in a primate species during reproductive senescence, a result that may have implications for menopausal symptoms.

Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3717-3724
Author(s):  
M. Shahab ◽  
M. Vargas Trujillo ◽  
T. M. Plant

A somatic signal has been posited to trigger the pubertal resurgence in pulsatile GnRH secretion that initiates puberty in highly evolved primates. That GH might provide such a signal emerged in 2000 as a result of a study reporting that circulating nocturnal GH concentrations in castrated juvenile male monkeys increased in a 3-week period immediately preceding the pubertal resurgence of LH secretion. The present study was conducted to reexamine this intriguing relationship, again in an agonadal model. Four castrated juvenile male monkeys were implanted with indwelling jugular catheters, housed in remote sampling cages, and subjected to 24 hours of sequential blood sampling (every 30 min) every 2 weeks from 19.5 to 22 months of age. Twenty-four-hour profiles of circulating GH concentrations were analyzed using the pulse detection algorithm, PULSAR, and developmental changes in pulsatile GH release with respect to the initiation of the pubertal rise of LH secretion (week 0; observed between 22.5 and 32 mo of age) were examined for significance by a repeated-measures ANOVA. Changes in the parameters of pulsatile GH secretion, including mean 24-hour GH concentration and GH pulse frequency and pulse amplitude for 3 (n = 4) and 6 (n = 3) months before week 0 were unremarkable and nonsignificant. These findings fail to confirm those of the earlier study and lead us to conclude that the timing of the pubertal resurgence of GnRH release in the male monkey is not dictated by GH. Reasons for the discrepancy between the two studies are unclear.


1985 ◽  
Vol 107 (3) ◽  
pp. 429-436 ◽  
Author(s):  
G. Shaw ◽  
G. I. Jorgensen ◽  
R. Tweedale ◽  
M. Tennison ◽  
M. J. Waters

ABSTRACT Adult Merino ewes were infused via the jugular vein with either saline (n = 5) or epidermal growth factor (EGF) (4·2 μg/kg per h, n = 6) for 24 h in either the luteal phase or the follicular phase of the oestrous cycle and reproductive function was examined. Infusion of EGF during the luteal phase caused no detectable change in plasma progesterone or prolactin concentrations over a 7-day period compared with the controls. Infusion of EGF during the follicular phase suppressed the oestrous rise in plasma oestradiol. Luteinizing hormone pulse amplitude was increased and pulse frequency was decreased by the end of the infusion. All control ewes had a pro-oestrous LH surge and mated, but the LH surge and oestrus were prevented by EGF infusion. Nevertheless, plasma progesterone levels rose subsequently in the EGF-infused ewes in parallel with the control ewes, suggesting that the preovulatory follicle had luteinized. Both LH and FSH rose over the 7 days after EGF infusion to levels similar to those in ovariectomized ewes. Thus EGF appears to inhibit follicular oestradiol production, although it does not affect luteal progesterone production or follicular luteinization. We suggest that the alteration in gonadotrophin secretion patterns results from a disturbance of feedback mechanisms between the ovary and the hypothalamopituitary axis, although a direct effect in the brain or the pituitary gland cannot yet be excluded. J. Endocr. (1985) 107, 429–436


2014 ◽  
Vol 306 (11) ◽  
pp. E1292-E1304 ◽  
Author(s):  
W. K. McGee ◽  
C. V. Bishop ◽  
C. R. Pohl ◽  
R. J. Chang ◽  
J. C. Marshall ◽  
...  

Many patients with hyperandrogenemia are overweight or obese, which exacerbates morbidities associated with polycystic ovary syndrome (PCOS). To examine the ability of testosterone (T) to generate PCOS-like symptoms, monkeys received T or cholesterol (control) implants ( n = 6/group) beginning prepubertally. As previously reported, T-treated animals had increased neuroendocrine drive to the reproductive axis [increased luteinizing hormone (LH) pulse frequency] at 5 yr, without remarkable changes in ovarian or metabolic features. To examine the combined effects of T and obesity, at 5.5 yr (human equivalent age: 17 yr), monkeys were placed on a high-calorie, high-fat diet typical of Western cultures [Western style diet (WSD)], which increased body fat from <2% (pre-WSD) to 15–19% (14 mo WSD). By 6 mo on WSD, LH pulse frequency in the controls increased to that of T-treated animals, whereas LH pulse amplitude decreased in both groups and remained low. The numbers of antral follicles present during the early follicular phase increased in both groups on the WSD, but maximal follicular size decreased by 50%. During the late follicular phase, T-treated females had greater numbers of small antral follicles than controls. T-treated monkeys also had lower progesterone during the luteal phase of the menstrual cycle. Although fasting insulin did not vary between groups, T-treated animals had decreased insulin sensitivity after 1 yr on WSD. Thus, while WSD consumption alone led to some features characteristic of PCOS, T + WSD caused a more severe phenotype with regard to insulin insensitivity, increased numbers of antral follicles at midcycle, and decreased circulating luteal phase progesterone levels.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Margaritis Voliotis ◽  
Xiao Feng Li ◽  
Ross Alexander De Burgh ◽  
Geffen Lass ◽  
Deyana Ivanova ◽  
...  

Pulsatile GnRH release is essential for normal reproductive function. Kisspeptin secreting neurons found in the arcuate nucleus, known as KNDy neurons for co-expressing neurokinin B, and dynorphin, drive pulsatile GnRH release. Furthermore, gonadal steroids regulate GnRH pulsatile dynamics across the ovarian cycle by altering KNDy neurons' signalling properties. However, the precise mechanism of regulation remains mostly unknown. To better understand these mechanisms we start by perturbing the KNDy system at different stages of the estrous cycle using optogenetics. We find that optogenetic stimulation of KNDy neurons stimulates pulsatile GnRH/LH secretion in estrous mice but inhibits it in diestrous mice. These in-vivo results in combination with mathematical modelling suggest that the transition between estrus and diestrus is underpinned by well-orchestrated changes in neuropeptide signalling and in the excitability of the KNDy population controlled via glutamate signalling. Guided by model predictions, we show that blocking glutamate signalling in diestrous animals inhibits LH pulses, and that optic stimulation of the KNDy population mitigates this inhibition. In estrous mice, disruption of glutamate signalling inhibits pulses generated via sustained low-frequency optic stimulation of the KNDy population, supporting the idea that the level of network excitability is critical for pulse generation. Our results reconcile previous puzzling findings regarding the estradiol-dependent effect that several neuromodulators have on the GnRH pulse generator dynamics. Therefore, we anticipate our model to be a cornerstone for a more quantitative understanding of the pathways via which gonadal steroids regulate GnRH pulse generator dynamics. Finally, our results could inform useful repurposing of drugs targeting the glutamate system in reproductive therapy.


1990 ◽  
Vol 126 (3) ◽  
pp. 385-393 ◽  
Author(s):  
B. K. Campbell ◽  
G. E. Mann ◽  
A. S. McNeilly ◽  
D. T. Baird

ABSTRACT The pattern of pulsatile secretion of inhibin, oestradiol and androstenedione by the ovary at different stages of the oestrous cycle in sheep was studied in five Finn–Merino ewes in which the left ovary had been autotransplanted to the neck. The ewes had jugular venous blood samples collected at 4-hourly intervals from 42 h before the induction of luteolysis by i.m. injection of cloprostenol (100 μg) on day 10 of the oestrous cycle, until day 3 of the following cycle. There were five periods of intensive blood sampling, when both ovarian and jugular venous blood samples were collected, as follows: (a) mid-luteal phase, before the second injection of cloprostenol on day 10 (15-min intervals for 6 h); (b) early follicular phase, 24 h after the second injection of cloprostenol (10-min intervals for 4 h); (c) late follicular phase, 48 h after the second injection of cloprostenol (10-min intervals for 4 h); (d) after the LH surge on day 1 of the cycle, 76 h after the second injection of cloprostenol (10-min intervals for 4 h); (e) early luteal phase on day 3 of the cycle, 120 h after the second injection of cloprostenol (10-min intervals for 3 h). Plasma was collected and the samples assayed for LH, FSH, progesterone, oestradiol, androstenedione and inhibin. The ovarian secretion rates for oestradiol, androstenedione and inhibin were calculated. All ewes responded normally to the luteolytic dose of cloprostenol with the preovulatory surge of LH occurring within 56·4±1·6 h (mean ± s.e.m.) followed by the establishment of a normal luteal phase. The pulse frequency of LH, oestradiol and androstenedione increased in the transition from the luteal to the follicular phase (P<0·01). On day 1 of the cycle LH secretion consisted of low-amplitude high-frequency pulses (1·0±0·1 pulse/h) to which androstenedione, but not oestradiol, responded. On day 3 of the cycle LH secretion was similar to that on day 1 but both androstenedione and oestradiol secretion were pulsatile in response to LH, indicating the presence of oestrogenic follicles. The stage of the cycle had no significant effects on LH pulse amplitude and nadir but the ovarian secretory response to LH stimulation did vary with the stage of the cycle. Prolactin pulse frequency, amplitude and nadir were higher (P<0·05) during the follicular phase than the luteal phase. Prolactin pulse frequency was depressed (P<0·05) on day 1 of the cycle but increased to follicular phase levels on day 3. Prolactin pulse frequency was significantly correlated to oestradiol pulse frequency (r = 0·54; P<0·01). During the luteal phase there were insufficient oestradiol pulses to obtain an estimate of pulse amplitude and nadir but both these parameters reached their highest level during the late follicular phase, fell to negligible levels on day 1 and increased to early follicular phase levels on day 3. Androstenedione pulse amplitude and nadir exhibited similar but less marked variation. Inhibin secretion was episodic at all stages of the cycle examined but did not exhibit significant variation with stage of cycle in any of the parameters of episodic secretion measured. Inhibin pulses were not related to either LH or prolactin at any stage of the cycle. FSH secretion was not detectably pulsatile but jugular venous concentrations of FSH at each stage of the oestrous cycle were negatively correlated with mean oestradiol (r= −0·52; P<0·01 but not inhibin secretion (r = 0·19). We conclude that (i) LH secretion is pulsatile at all stages of the oestrous cycle but the steroidogenic responses of the ovary varies with the stage of the cycle, reflecting changes in characteristics of the follicle population, (ii) ovarian inhibin secretion is episodic and displays little change with the stage of the oestrous cycle and (iii) episodic inhibin secretion is not related to either pulses of LH or prolactin. The aetiology of these inhibin pulses therefore remains unknown. Journal of Endocrinology (1990) 126, 385–393


2007 ◽  
Vol 27 (11) ◽  
pp. 4105-4120 ◽  
Author(s):  
Stefan Lim ◽  
Min Luo ◽  
Mingshi Koh ◽  
Meng Yang ◽  
Mohammed Nizam bin Abdul Kadir ◽  
...  

ABSTRACT The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced in the embryonic pituitary in response to delivery of the hypothalamic gonadotropin releasing hormone (GnRH). GnRH has a pivotal role in reestablishing gonadotropin levels at puberty in primates, and for many species with extended reproductive cycles, these are reinitiated in response to central nervous system-induced GnRH release. Thus, a clear role is evident for GnRH in overcoming repression of these genes. Although the mechanisms through which GnRH actively stimulates LH and FSH β-subunit (FSHβ) gene transcription have been described in some detail, there is currently no information on how GnRH overcomes repression in order to terminate reproductively inactive stages. We show here that GnRH overcomes histone deacetylase (HDAC)-mediated repression of the gonadotropin β-subunit genes in immature gonadotropes. The repressive factors associated with each of these genes comprise distinct sets of HDACs and corepressors which allow for differentially regulated derepression of these two genes, produced in the same cell by the same regulatory hormone. We find that GnRH activation of calcium/calmodulin-dependent protein kinase I (CaMKI) plays a crucial role in the derepression of the FSHβ gene involving phosphorylation of several class IIa HDACs associated with both the FSHβ and Nur77 genes, and we propose a model for the mechanisms involved. In contrast, derepression of the LH β-subunit gene is not CaMK dependent. This demonstration of HDAC-mediated repression of these genes could explain the temporal shut-down of reproductive function at certain periods of the life cycle, which can easily be reversed by the actions of the hypothalamic regulatory hormone.


2013 ◽  
Vol 98 (11) ◽  
pp. 4464-4474 ◽  
Author(s):  
C. N. Jayasena ◽  
A. N. Comninos ◽  
G. M. K. Nijher ◽  
A. Abbara ◽  
A. De Silva ◽  
...  

Background: Kisspeptin is a critical hypothalamic regulator of reproductive function. Chronic kisspeptin administration causes profound tachyphylaxis in male monkeys and in women with functional hypothalamic amenorrhea. The pharmacological effects of chronic kisspeptin exposure in healthy women with normal menstrual cycles have not been studied previously. Aim: Our aim was to determine the effects of follicular-phase kisspeptin-54 treatment on menstrual cyclicity in healthy women. Methods: We performed a prospective, single-blinded, 1-way crossover study. Healthy women received twice-daily sc injections of kisspeptin (6.4 nmol/kg) or 0.9% saline during menstrual days 7–14 (n = 5 per treatment arm). Serial assessments of basal reproductive hormones, ultrasound parameters, LH pulsatility, and acute sensitivity to GnRH and kisspeptin-54 injection were performed. Results: Menstrual cyclicity persisted in all women after follicular-phase kisspeptin-54 treatment. Chronic exposure to kisspeptin-54 did not abolish acute stimulation of LH after injection of kisspeptin-54 or GnRH. In addition, kisspeptin-54 treatment was associated with a shorter mean length of the menstrual cycle (mean length of menstrual cycle was 28.6 ± 1.4 days with saline vs 26.8 ± 3.1 days with kisspeptin, P &lt; .01), earlier onset of highest recorded serum LH (mean menstrual day of highest LH was 15.2 ± 1.3 with saline vs 13.0 ± 1.9 with kisspeptin, P &lt; .05), and earlier onset of the luteal phase (mean menstrual day of progesterone increase was 18.0 ± 2.1 with saline vs 15.8 ± 0.9 with kisspeptin, P &lt; .05). Conclusion: Our data suggest that 1 week of exogenous kisspeptin-54 does not abolish menstrual cyclicity in healthy women. Further work is needed to determine whether kisspeptin could be used to treat certain anovulatory disorders.


1989 ◽  
Vol 122 (2) ◽  
pp. 509-517 ◽  
Author(s):  
R. J. E. Horton ◽  
H. Francis ◽  
I. J. Clarke

ABSTRACT The natural opioid ligand, β-endorphin, and the opioid antagonist, naloxone, were administered intracerebroventricularly (i.c.v.) to evaluate effects on LH secretion in ovariectomized ewes and in ovariectomized ewes treated with oestradiol-17β plus progesterone either during the breeding season or the anoestrous season. Ovary-intact ewes were also studied during the follicular phase of the oestrous cycle. Jugular blood samples were taken at 10-min intervals for 8 h and either saline (20–50 μl), 100 μg naloxone or 10 μg β-endorphin were injected i.c.v. after 4 h. In addition, luteal phase ewes were injected i.c.v. with 25 μg β-endorphin(1–27), a purported endogenous opioid antagonist. In ovariectomized ewes, irrespective of season, saline and naloxone did not affect LH secretion, but β-endorphin decreased the plasma LH concentrations, by reducing LH pulse frequency. The effect of β-endorphin was blocked by administering naloxone 30 min beforehand. Treating ovariectomized ewes with oestradiol-17β plus progesterone during the breeding season reduced plasma LH concentrations from 6–8 μg/l to less than 1 μg/l. In these ewes, saline did not alter LH secretion, but naloxone increased LH pulse frequency and the plasma concentrations of LH within 15–20 min. During anoestrus, the combination of oestradiol-17β plus progesterone to ovariectomized ewes reduced the plasma LH concentrations from 3–5 μg/l to undetectable levels, and neither saline nor naloxone affected LH secretion. During the follicular phase of the oestrous cycle, naloxone enhanced LH pulse frequency, which resulted in increased plasma LH concentrations; saline had no effect. In these sheep, β-endorphin decreased LH pulse frequency and the mean concentrations of LH, and this effect was prevented by the previous administration of naloxone. The i.c.v. administration of β-endorphin(1–27) to luteal phase ewes did not affect LH secretion. These data demonstrate the ability of a naturally occurring opioid peptide to inhibit LH secretion in ewes during the breeding and non-breeding seasons, irrespective of the gonadal steroid background. In contrast, whilst the gonadal steroids suppress LH secretion in ovariectomized ewes during both seasons, they only appear to activate endogenous opioid peptide (EOP)-mediated inhibition of LH secretion during the breeding season. Furthermore, these data support the notion that LH secretion in ovariectomized ewes is not normally under the control of EOP, so that naloxone has no effect. Journal of Endocrinology (1989) 122, 509–517


Sign in / Sign up

Export Citation Format

Share Document