scholarly journals Centrally and Peripherally Administered Ghrelin Potently Inhibits Water Intake in Rats

Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1638-1647 ◽  
Author(s):  
Hirofumi Hashimoto ◽  
Hiroaki Fujihara ◽  
Makoto Kawasaki ◽  
Takeshi Saito ◽  
Minori Shibata ◽  
...  

Ghrelin is known as a potent orexigenic hormone through its action on the brain. In this study, we examined the effects of intracerebroventricular (icv) and iv injection of ghrelin on water intake, food intake, and urine volume in rats deprived of water for 24 h. Water intake that occurred after water deprivation was significantly inhibited by icv injection of ghrelin (0.1, 1, and 10 nmol/rat) in a dose-related manner, although food intake was stimulated by the hormone. The antidipsogenic effect was as potent as the orexigenic effect. Similarly, water intake was inhibited, whereas food intake was stimulated dose dependently after iv injection of ghrelin (0.1, 1, and 10 nmol/kg). The inhibition of drinking was comparable with, or even more potent than, atrial natriuretic peptide (ANP), an established antidipsogenic hormone, when administered icv, although the antidipsogenic effect lasted longer. ANP had no effect on food intake. Urine volume decreased dose relatedly after icv injection of ghrelin but not by ANP. Intravenous injection of ghrelin had no effect on urine volume. Because drinking usually occurs with feeding, food was withdrawn to remove the prandial drinking. Then the antidipsogenic effect of ghrelin became more potent than that of ANP and continued longer than when food was available. Expression of Fos was increased in the area postrema and the nucleus of the tractus solitarius by using immunohistochemistry after icv and iv injection of ghrelin. The present study convincingly showed that ghrelin is a potent antidisogenic peptide in rats.

1994 ◽  
Vol 86 (6) ◽  
pp. 723-730 ◽  
Author(s):  
B. M. Y. Cheung ◽  
J. E. C. Dickerson ◽  
M. J. Ashby ◽  
M. J. Brown ◽  
J. Brown

1. Brain natriuretic peptide, closely related to atrial natriuretic peptide in structure, may be an important circulating hormone. Its physiological role is unclear. First, we studied the effects of incremental infusions of brain natriuretic peptide in six healthy men on plasma brain natriuretic peptide levels and the pharmacokinetics of brain natriuretic peptide. Synthetic human brain natriuretic peptide-32 was infused intravenously, at an initial rate of 0.4 pmol min−1 kg−1, doubling every 15 min until the dose rate reached 6.4 pmol min−1 kg−1, at which rate the infusion was maintained for 30 min. 2. The brain natriuretic peptide infusion raised the brain natriuretic peptide-like immunoreactivity from 1.4 ± 0.5 pmol/l to 21.4 ± 7.6 pmol/l. Brain natriuretic peptide-like immunoreactivity after the end of infusion was consistent with a bi-exponential decay, with half-lives of 2.1 min and 37 min. 3. Next, we studied the effects of low-dose infusion of brain natriuretic peptide to mimic physiological increments in the circulating levels in comparison with atrial natriuretic peptide. Six dehydrated male subjects received intravenous infusions of atrial natriuretic peptide and brain natriuretic peptide, separately and in combination, in a randomized double-blind, placebo-controlled, four-part cross-over design. Atrial natriuretic peptide and brain natriuretic peptide were given at the rate of 0.75 and 0.4 pmol min−1 kg−1, respectively, for 3 h. The control infusion consisted of the vehicle. 4. Analysis of variance showed that atrial natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide, but not brain natriuretic peptide alone, increased urinary flow and decreased urinary osmolality significantly. However, urinary sodium excretion was significantly increased by atrial natriuretic peptide, brain natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide. 5. None of the four infusates significantly altered the blood pressure, heart rate or glomerular filtration rate. 6. This study showed, for the first time, that physiological increments in brain natriuretic peptide, like those in atrial natriuretic peptide, are natriuretic. Although atrial natriuretic peptide and brain natriuretic peptide do not appear to interact synergistically, they are likely to act in concert in the physiological regulation of sodium balance.


1992 ◽  
Vol 579 (1) ◽  
pp. 113-118 ◽  
Author(s):  
R.S. Weisinger ◽  
J.R. Blair-West ◽  
D.A. Denton ◽  
E. Tarjan

1989 ◽  
Vol 77 (5) ◽  
pp. 509-514 ◽  
Author(s):  
J. S. Milledge ◽  
J. M. Beeley ◽  
S. McArthur ◽  
A. H. Morice

1. To investigate the mechanisms of acute mountain sickness, 22 subjects travelled to 3100 m by road and the following day walked to 4300 m on Mount Kenya. Control measurements were made over 2 days at 1300 m before ascent and for 2 days after arrival at 4300 m. These included body weight, 24 h urine volume, 24 h sodium and potassium excretion, blood haemoglobin, packed cell volume, and symptom score for acute mountain sickness. In 15 subjects blood samples were taken for assay of plasma aldosterone and atrial natriuretic peptide. 2. Altitude and the exercise in ascent resulted in a marked decrease in 24 h urine volume and sodium excretion. Aldosterone levels were elevated on the first day and atrial natriuretic peptide levels were higher on both altitude days compared with control. 3. Acute mountain sickness symptom scores showed a significant negative correlation with 24 h urinary sodium excretion on the first altitude day. Aldosterone levels tended to be lowest in subjects with low symptom scores and higher sodium excretion. No correlation was found between changes in haemoglobin concentration, packed cell volume, 24 h urine volume or body weight and acute mountain sickness symptom score. 4. Atrial natriuretic peptide levels at low altitude showed a significant inverse correlation with acute mountain sickness symptom scores on ascent.


2010 ◽  
Vol 31 (2) ◽  
pp. 457-466 ◽  
Author(s):  
Shingo Ito ◽  
Sumio Ohtsuki ◽  
Yuki Katsukura ◽  
Miho Funaki ◽  
Yusuke Koitabashi ◽  
...  

Cerebral atrial natriuretic peptide (ANP), which is generated in the brain, has functions in the regulation of brain water and electrolyte balance, blood pressure and local cerebral blood flow, as well as in neuroendocrine functions. However, cerebral ANP clearance is still poorly understood. The purpose of this study was to clarify the mechanism of blood–brain (BBB) efflux transport of ANP in mouse. Western blot analysis showed expression of natriuretic peptide receptor (Npr)-A and Npr-C in mouse brain capillaries. The brain efflux index (BEI) method confirmed elimination of [125I]human ANP (hANP) from mouse brain across the BBB. Inhibition studies suggested the involvement of Npr-C in vivo. Furthermore, rapid internalization of [125I]hANP by TM-BBB4 cells (an in vitro BBB model) was significantly inhibited by Npr-C inhibitors and by two different Npr-C-targeted short interfering RNAs (siRNAs). Finally, treatment with 1α,25-dihydroxyvitamin D3(1,25(OH)2D3) significantly increased Npr-C expression in TM-BBB4 cells, as determined by liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based targeted absolute proteomics. Our results indicate that Npr-C mediates brain-to-blood efflux transport of ANP at the mouse BBB as a pathway of cerebral ANP clearance. It seems likely that levels of natriuretic peptides in the brain are modulated by 1,25(OH)2D3 through upregulation of Npr-C expression at the BBB.


1988 ◽  
Vol 75 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Angela C. Shore ◽  
Nirmala D. Markandu ◽  
Giuseppe A. Sagnella ◽  
Donald R. J. Singer ◽  
Mary L. Forsling ◽  
...  

1. Nine normal subjects (eight male, one female) on a fixed daily intake of 150 mmol of sodium and 80 mnol of potassium, were randomized to receive either 3 days of 1.0 litre total water intake/24 h (food + fluid) or 4 days of 6.8 litres total water intake/24 h, and were then crossed over after a 3 day control period (2.7 litres water/24 h). 2. During water restriction, urine volume fell from 1.94 litres/24 h to less than 1 litre/24 h by the first day and was 0.77 litre/24 h on the final day. Plasma atrial natriuretic peptide levels were unchanged from baseline despite a large increase in plasma vasopressin and plasma and urine osmolality. Urinary sodium was unaltered throughout, while urinary potassium was increased on the final 2 days of water restriction. 3. During water loading, urine volume increased from 1.85 litres/24 h to 5.44 litres/24 h on the first day and remained at approximately 6 litres/24 h for the final 3 days. Plasma atrial natriuretic peptide showed no change. Plasma vasopressin and plasma and urine osmolality were reduced. Urinary sodium and potassium output were unchanged from baseline. 4. These results suggest that changes in plasma atrial natriuretic peptide are unlikely to be involved in the normal homoeostatic response to changes in water balance in man.


Polar Biology ◽  
2000 ◽  
Vol 23 (10) ◽  
pp. 691-698 ◽  
Author(s):  
Mario Pestarino ◽  
Simona Candiani ◽  
Maria Angela Masini ◽  
Maddalena Sturla ◽  
Andrea Augello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document