scholarly journals Energetic Metabolism and Human Sperm Motility: Impact of CB1 Receptor Activation

Endocrinology ◽  
2010 ◽  
Vol 151 (12) ◽  
pp. 5882-5892 ◽  
Author(s):  
A. Barbonetti ◽  
M. R. C. Vassallo ◽  
D. Fortunato ◽  
S. Francavilla ◽  
M. Maccarrone ◽  
...  

It has been reported that the endocannabinoid anandamide (AEA) exerts an adverse effect on human sperm motility, which has been ascribed to inhibition of mitochondrial activity. This seems to be at variance with evidence suggesting a major role of glycolysis in supplying ATP for sperm motility; furthermore, the role of AEA-binding receptors in mediating mitochondrial inhibition has not yet been explored. In this study, human sperm exposure to Met-AEA (methanandamide, nonhydrolyzable analog of AEA) in the micromolar range significantly decreased mitochondrial transmembrane potential (ΔΨm), similarly to rotenone, mitochondrial complex I inhibitor. The effect of Met-AEA (1 μm) was prevented by SR141716, CB1 cannabinoid receptor antagonist, but not by SR144528, CB2 antagonist, nor by iodoresiniferatoxin, vanilloid receptor antagonist. The effect of Met-AEA did not involve activation of caspase-9 or caspase-3 and was reverted by washing. In the presence of glucose, sperm exposure either to Met-AEA up to 1 μm or to rotenone for up to 18 h did not affect sperm motility. At higher doses Met-AEA produced a CB1-independent poisoning of spermatozoa, reducing their viability. Under glycolysis blockage, 1 μm Met-AEA, similarly to rotenone, dramatically abolished sperm motility, an effect that was prevented by SR1 and reverted by washing. In conclusion, CB1 activation induced a nonapoptotic decrease of ΔΨm, the detrimental reflection on sperm motility of which could be revealed only under glycolysis blockage, unless very high doses of Met-AEA, producing CB1-independent sperm toxicity, were used. The effects of CB1 activation reported here contribute to elucidate the relationship between energetic metabolism and human sperm motility.

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
J Gertsch ◽  
M Leonti ◽  
L Casu ◽  
F Cottiglia ◽  
S Raduner ◽  
...  

Neuroreport ◽  
1995 ◽  
Vol 6 (10) ◽  
pp. 1421-1425 ◽  
Author(s):  
Christiane Gueudet ◽  
Vincent Santucci ◽  
Murielle Rinaldi-Carmona ◽  
Philippe Soubrié ◽  
Gérard Le Fur

2014 ◽  
Vol 54 (1) ◽  
pp. 75-89 ◽  
Author(s):  
Pál Gyombolai ◽  
András D Tóth ◽  
Dániel Tímár ◽  
Gábor Turu ◽  
László Hunyady

The role of the highly conserved ‘DRY’ motif in the signaling of the CB1cannabinoid receptor (CB1R) was investigated by inducing single-, double-, and triple-alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Goproteins (∼80% of WT CB1R (CB1R-WT)). Moreover, this mutant showed an enhanced basal β-arrestin2 (β-arr2) recruitment. More strikingly, the double-mutant CB1R-D3.49A/R3.50A was biased toward β-arrs, as it gained a robustly increased β-arr1 and β-arr2 recruitment ability compared with the WT receptor, while its G-protein activation was decreased. In contrast, the double-mutant CB1R-R3.50A/Y3.51A proved to be G-protein-biased, as it was practically unable to recruit β-arrs in response to agonist stimulus, while still activating G-proteins, although at a reduced level (∼70% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed a good correlation with their β-arr recruitment ability but not with their G-protein activation or inhibition of cAMP accumulation. Our results suggest that G-protein activation and β-arr binding of the CB1R are mediated by distinct receptor conformations, and the conserved ‘DRY’ motif plays different roles in the stabilization of these conformations, thus mediating both G-protein- and β-arr-mediated functions of CB1R.


Neuroreport ◽  
1997 ◽  
Vol 8 (2) ◽  
pp. 491-496 ◽  
Author(s):  
Miguel Navarro ◽  
Elena Hernández ◽  
Raúl M. Muñoz ◽  
Ignacio del Arco ◽  
María Angeles Villanúa ◽  
...  

SURG Journal ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 21-29
Author(s):  
Rachel I. Downey ◽  
Cheryl L. Limebeer ◽  
Heather I. Morris ◽  
Linda A. Parker

This study investigates the role of the endocannabinoid 2-arachidonyl glycerol (2-AG) in regulating acute and anticipatory nausea in rats using the conditioned gaping model. The animals were systemically pretreated with MJN110, a selective monoacylglycerol lipase (MAGL) inhibitor, to enhance endogenous levels of 2-AG. Acute nausea was assessed using the taste reactivity model in which a flavour, saccharin, was paired with the administration of the emetic agent, lithium chloride (LiCl). Anticipatory nausea was assessed using a model of contextually elicited conditioned gaping in which a context was paired with the emetic agent, LiCl. Results indicated that MJN110 at the 10.0 mg kg-1 and 20.0 mg kg-1 dosage significantly attenuated acute and anticipatory nausea, as displayed by the significant reduction in mean number of gapes. This suppression was mediated by CB1 receptor activation as displayed by reversal of such effects when MJN110 was coadministered with the CB1 receptor antagonist, SR 141716. The results suggest that enhancement of endogenous 2-AG levels by MAGL inhibition may have anti-emetic potential. Keywords: 2-arachidonyl glycerol; monoacylglycerol lipase; endocannabinoid; nausea; conditioned gaping; CB1 receptor


2001 ◽  
Vol 281 (5) ◽  
pp. H2218-H2225 ◽  
Author(s):  
Jennifer R. Ballew ◽  
Gregory D. Fink

We showed recently that endothelin (ET)A receptors are involved in the salt sensitivity of ANG II-induced hypertension. The objective of this current study was to characterize the role of endothelin ETB receptor activation in the same model. Male rats on fixed normal (2 meq/day) or high (6 meq/day) salt intake received a continuous intravenous infusion of ANG II or salt only for 15 days. During the middle 5 days of the infusion period, rats were given either the selective ETB receptor antagonist A-192621 or the nonselective endothelin receptor antagonist A-182086 (both at 24 mg · kg−1 · day−1intra-arterially). Infusion of ANG II caused a greater rise in arterial pressure in rats on high-salt intake. The administration of A-192621 increased arterial pressure further in all rats. The chronic hypertensive effect of A-192621 was not significantly affected by salt intake or ANG II. The administration of A-182086 lowered arterial pressure chronically only in rats on normal salt intake receiving ANG II. Thus the salt sensitivity of ANG II-induced hypertension is not caused by changes in ETB receptor function.


2019 ◽  
Vol 34 (7) ◽  
pp. 1186-1194 ◽  
Author(s):  
Yi-min Cheng ◽  
Xiao-nian Hu ◽  
Zhen Peng ◽  
Ting-ting Pan ◽  
Fang Wang ◽  
...  

AbstractSTUDY QUESTIONIs there a role for lysine glutarylation (Kglu), a newly identified protein post-translational modification (PTM), in human sperm?SUMMARY ANSWERKglu occurs in several proteins located in the tail of human sperm, and it was reduced in asthenozoospermic (A) men and positively correlated with progressive motility of human sperm, indicating its important role in maintaining sperm motility.WHAT IS KNOWN ALREADYSince mature sperm are almost transcriptionally silent, PTM is regarded as an important pathway in regulating sperm function. However, only phosphorylation has been extensively studied in mature sperm to date. Protein lysine modification (PLM), a hot spot of PTMs, was rarely studied except for a few reports on lysine methylation and acetylation. As a newly identified PLM, Kglu has not been well characterized, especially in mature sperm.STUDY DESIGN, SIZE, DURATIONSperm samples were obtained from normozoospermic (N) men and A men who visited the reproductive medical center between February 2016 and January 2018. In total, 61 N men and 59 A men were recruited to participate in the study.PARTICIPANTS/MATERIALS, SETTING, METHODSKglu was examined by immunoblotting and immunofluorescence assays using a previously qualified pan-anti-glutaryllysine antibody that recognizes glutaryllysine in a wide range of sequence contexts (both in histones and non-histone substrates) but not the structurally similar malonyllysine and succinyllysine. The immunofluorescence assay was imaged using laser scanning confocal microscopy and super-resolution structured illumination microscopy. Sperm motility parameters were examined by computer-assisted sperm analysis.MAIN RESULTS AND THE ROLE OF CHANCEKglu occurs in several proteins (20–150 kDa) located in the tail of human sperm, especially in the middle piece and the latter part of the principal piece. Sperm Kglu was modulated by regulatory systems (enzymes and glutaryl-CoA) similar to those in HeLa cells. The mean level of sperm Kglu was significantly reduced in A men compared with N men (P < 0.001) and was positively correlated with progressive motility (P < 0.001). The sodium glutarate-induced elevation of Kglu levels in A men with lower Kglu levels in sperm significantly improved the progressive motility (P < 0.001). Furthermore, the reduced sperm Kglu levels in A men was accompanied by an increase in sperm glutaryl-CoA dehydrogenase (a regulatory enzyme of Kglu).LARGE SCALE DATAN/ALIMITATIONS, REASONS FOR CAUTIONAlthough the present study indicated the involvement of sperm Kglu in maintaining progressive motility of human sperm, the underlying mechanism needs to be investigated further.WIDER IMPLICATIONS OF THE FINDINGSThe findings of this study provide an insight into the novel role of Kglu in human sperm and suggest that abnormality of sperm PLMs may be one of the causes of asthenozoospermia.STUDY FUNDING/COMPETING INTEREST(S)National Natural Science Foundation of China (81 771 644 to T.L.; 31 671 204 to X.Z. and 81 871 207 to H.C.); National Basic Research Program of China (973 Program, 2015CB943003 to X.Z.); Natural Science Foundation of Jiangxi, China (20171ACB21006 and 20161BAB204167 to T.L.; 20165BCB18001 to X.Z.). The authors have no conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document