scholarly journals Mouse and Human BAC Transgenes Recapitulate Tissue-Specific Expression of the Vitamin D Receptor in Mice and Rescue the VDR-Null Phenotype

Endocrinology ◽  
2014 ◽  
Vol 155 (6) ◽  
pp. 2064-2076 ◽  
Author(s):  
Seong Min Lee ◽  
Kathleen A. Bishop ◽  
Joseph J. Goellner ◽  
Charles A. O'Brien ◽  
J. Wesley Pike

The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombineered bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombineered mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC-derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.

1998 ◽  
Vol 18 (10) ◽  
pp. 6023-6034 ◽  
Author(s):  
Gang Feng Wang ◽  
William Nikovits ◽  
Mark Schleinitz ◽  
Frank E. Stockdale

ABSTRACT We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.


2000 ◽  
Vol 20 (9) ◽  
pp. 3316-3329 ◽  
Author(s):  
Carsten Müller ◽  
Carol Readhead ◽  
Sven Diederichs ◽  
Gregory Idos ◽  
Rong Yang ◽  
...  

ABSTRACT Gene expression in mammalian organisms is regulated at multiple levels, including DNA accessibility for transcription factors and chromatin structure. Methylation of CpG dinucleotides is thought to be involved in imprinting and in the pathogenesis of cancer. However, the relevance of methylation for directing tissue-specific gene expression is highly controversial. The cyclin A1 gene is expressed in very few tissues, with high levels restricted to spermatogenesis and leukemic blasts. Here, we show that methylation of the CpG island of the human cyclin A1 promoter was correlated with nonexpression in cell lines, and the methyl-CpG binding protein MeCP2 suppressed transcription from the methylated cyclin A1 promoter. Repression could be relieved by trichostatin A. Silencing of a cyclin A1 promoter-enhanced green fluorescent protein (EGFP) transgene in stable transfected MG63 osteosarcoma cells was also closely associated with de novo promoter methylation. Cyclin A1 could be strongly induced in nonexpressing cell lines by trichostatin A but not by 5-aza-cytidine. The cyclin A1 promoter-EGFP construct directed tissue-specific expression in male germ cells of transgenic mice. Expression in the testes of these mice was independent of promoter methylation, and even strong promoter methylation did not suppress promoter activity. MeCP2 expression was notably absent in EGFP-expressing cells. Transcription from the transgenic cyclin A1 promoter was repressed in most organs outside the testis, even when the promoter was not methylated. These data show the association of methylation with silencing of the cyclin A1 gene in cancer cell lines. However, appropriate tissue-specific repression of the cyclin A1 promoter occurs independently of CpG methylation.


2001 ◽  
Vol 7 (2) ◽  
pp. 187-200 ◽  
Author(s):  
TAE HO LEE ◽  
JERRY PELLETIER

The Wilms’ tumor suppressor gene, wt1, encodes a zinc finger transcription factor that can regulate gene expression. It plays an essential role in tumorigenesis, kidney differentiation, and urogenital development. To identify WT1 downstream targets, gene expression profiling was conducted using a cDNA array hybridization approach. We confirm herein that the human vitamin D receptor (VDR), a ligand-activated transcription factor, is a WT1 downstream target. Nuclear run on experiments demonstrated that the effect of WT1 on VDR expression is at the transcriptional level. Transient transfection assays, deletion mutagenesis, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays suggest that, although WT1 is presented with a possibility of three binding sites within the VDR promoter, activation of the human VDR gene appears to occur through a single site. This site differs from a previously identified WT1-responsive site in the murine VDR promoter (Maurer U, Jehan F, Englert C, Hübinger G, Weidmann E, DeLucas HF, and Bergmann L. J Biol Chem 276: 3727–3732, 2001). We also show that the products of a Denys-Drash syndrome allele of wt1 inhibit WT1-mediated transactivation of the human VDR promoter. Our results indicate that the human VDR gene is a downstream target of WT1 and may be regulated differently than its murine counterpart.


2002 ◽  
Vol 282 (1) ◽  
pp. R173-R183 ◽  
Author(s):  
Min Nian ◽  
Jun Gu ◽  
David M. Irwin ◽  
Daniel J. Drucker

The glucagon-like peptides (GLPs) are synthesized and secreted in a nutrient-dependent manner in rodents; however, the factors regulating human GLP-1 and GLP-2 biosynthesis remain unclear. To understand how nutrients regulate human proglucagon gene expression, we studied the expression of a human proglucagon promoter-growth hormone (GH) transgene in 1.6 human glucagon-GH transgenic mice. Fasting-refeeding significantly decreased and increased the levels of circulating mouse insulin and transgene-derived hGH ( P < 0.05 fasting vs. refeeding) and decreased and upregulated, respectively, the levels of endogenous mouse proglucagon RNA in the ileum but not in the jejunum or colon. High-fiber feeding significantly increased the levels of glucose-stimulated circulating hGH and upregulated levels of mouse intestinal proglucagon gene expression in the jejunum, ileum, and colon ( P < 0.05, 0 vs. 30% fiber diet). In contrast, neither fasting-refeeding nor a high-fiber diet upregulated the expression of the human proglucagon promoter-hGH transgene. These findings demonstrate that human proglucagon gene regulatory sequences specifying tissue-specific expression in gut endocrine cells are not sufficient for recognition of energy-derived signals regulating murine glucagon gene expression in enteroendocrine cells in vivo.


1995 ◽  
Vol 58 (4) ◽  
pp. 291-295 ◽  
Author(s):  
Françoise Dandoy-Dron ◽  
Jean-Michel Itier ◽  
Eliane Monthioux ◽  
Danielle Bucchini ◽  
Jacques Jami

2013 ◽  
Vol 14 (7) ◽  
pp. R72 ◽  
Author(s):  
Robin P Smith ◽  
Samantha J Riesenfeld ◽  
Alisha K Holloway ◽  
Qiang Li ◽  
Karl K Murphy ◽  
...  

2020 ◽  
Author(s):  
Mahashweta Basu ◽  
Kun Wang ◽  
Eytan Ruppin ◽  
Sridhar Hannenhalli

AbstractComplex diseases are systemic, largely mediated via transcriptional dysregulation in multiple tissues. Thus, knowledge of tissue-specific transcriptome in an individual can provide important information about an individual’s health. Unfortunately, with a few exceptions such as blood, skin, and muscle, an individual’s tissue-specific transcriptome is not accessible through non-invasive means. However, due to shared genetics and regulatory programs between tissues, the transcriptome in blood may be predictive of those in other tissues, at least to some extent. Here, based on GTEx data, we address this question in a rigorous, systematic manner, for the first time. We find that an individual’s whole blood gene expression and splicing profile can predict tissue-specific expression levels in a significant manner (beyond demographic variables) for many genes. On average, across 32 tissues, the expression of about 60% of the genes is predictable from blood expression in a significant manner, with a maximum of 81% of the genes for the musculoskeletal tissue. Remarkably, the tissue-specific expression inferred from the blood transcriptome is almost as good as the actual measured tissue expression in predicting disease state for six different complex disorders, including Hypertension and Type 2 diabetes, substantially surpassing predictors built directly from the blood transcriptome. The code for our pipeline for tissue-specific gene expression prediction – TEEBoT, is provided, enabling others to study its potential translational value in other indications.


Sign in / Sign up

Export Citation Format

Share Document