scholarly journals Higher Hepatic miR-29 Expression in Undernourished Male Rats During the Postnatal Period Targets the Long-Term Repression of IGF-1

Endocrinology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Gurjeev Sohi ◽  
Andrew Revesz ◽  
Julie Ramkumar ◽  
Daniel B. Hardy

Abstract A nutritional mismatch in postnatal life of low birth weight offspring increases the risk of developing the metabolic syndrome. Moreover, this is associated with decreased hepaticIgf1 expression, leading to impaired growth and metabolism. Previously, we have demonstrated that the timing of nutritional restoration in perinatal life can differentially program hepatic gene expression. Although microRNAs also play an important role in silencing gene expression, to date, the impact of a nutritional mismatch in neonatal life on their long-term expression has not been evaluated. Given the complementarity of miR-29 to the 3′ untranslated region of Igf1, we examined how protein restoration in maternal protein restriction rat offspring influences hepatic miR-29 and Igf1 expression in adulthood. Pregnant Wistar rats were designated into 1 of 4 dietary regimes: 20% protein (control), 8% protein during lactation only (LP-Lact), 8% protein during gestation only (LP1) or both (LP2). The steady-state expression of hepatic miR-29 mRNAsignificantly increased in LP2 offspring at postnatal day 21 and 130, and this was inversely related to hepatic Igf1 mRNA and body weight. Interestingly, this reciprocal association was stronger in LP-Lact offspring at postnatal day 21. Functional relevance of this in vivo relationship was evaluated by transfection of miR-29 mimics in neonatal Clone 9 rat hepatoma cells. Transfection with miR-29 suppressed Igf1 expression by 12 hours. Collectively, these findings implicate that nutritional restoration after weaning (post liver differentiation) in maternal protein restriction rat offspring fails to prevent long-term impaired growth, in part, due to miR-29 suppression of hepatic Igf1 expression. (Endocrinology 156: 3069–3076, 2015)

2015 ◽  
Vol 74 (4) ◽  
pp. 479-485 ◽  
Author(s):  
S. A. Farid ◽  
O. M. Mahmoud ◽  
N. A. Salem ◽  
G. Abdel-Alrahman ◽  
G. A. Hafez

Author(s):  
Reza Khazaee ◽  
Anastasiya Vinokurtseva ◽  
Lynda A. McCaig ◽  
Cory Yamashita ◽  
Daniel B. Hardy ◽  
...  

Abstract Although abundant evidence exists that adverse events during pregnancy lead to chronic conditions, there is limited information on the impact of acute insults such as sepsis. This study tested the hypothesis that impaired fetal development leads to altered organ responses to a septic insult in both male and female adult offspring. Fetal growth restricted (FGR) rats were generated using a maternal protein-restricted diet. Male and female FGR and control diet rats were housed until 150–160 d of age when they were exposed either a saline (control) or a fecal slurry intraperitoneal (Sepsis) injection. After 6 h, livers and lungs were analyzed for inflammation and, additionally, the amounts and function of pulmonary surfactant were measured. The results showed increases in the steady-state mRNA levels of inflammatory cytokines in the liver in response to the septic insult in both males and females; these responses were not different between FGR and control diet groups. In the lungs, cytokines were not detectable in any of the experimental groups. A significant decrease in the relative amount of surfactant was observed in male FGR offspring, but this was not observed in control males or in female animals. Overall, it is concluded that FGR induced by maternal protein restriction does not impact liver and lung inflammatory response to sepsis in either male or female adult rats. An altered septic response in male FGR offspring with respect to surfactant may imply a contribution to lung dysfunction.


Author(s):  
V.A. Vokina

Long-term consequences of impaired perinatal development are very significant. They appear during the neonatal period and in the first years of life, and persist during ontogenesis. There is little data on the impact of any prenatal factors on the sensitivity of a sexually mature organism to medications. The aim of the study is to assess the impact of early life stress on the development of individual antidepressant sensitivity. Materials and Methods. The authors conducted the experiments on sexually mature outbred male rats. To simulate the early life stress, a standard protocol was used. From the 2nd to 15th days of the postnatal period the pup rats were separated from their mother for 3 hours and kept in an incubator. The open-field test, Porsolt test and Sucrose consumption test were used to determine rat’s anxiety level as well as motor, orientation and exploratory activity at puberty. Then, for 14 days, the rats were intragastrically administered with a fluoxetine solution (10 mg/kg/daily), followed by their full examination. Statistical analysis of results was performed using the Mann-Whitney U-test to compare unrelated groups and Wilcoxon's test to compare related groups. Results. Fluoxetine did not have a pronounced antidepressant effect in animals that survived the early life stress. Such animals demonstrated passive floating during the Porsolt test, without any changes in immobility time. When testing in an open field, a sharp increase in the number of freezing behavior was observed, which was an indicator of an increased anxiety level in animals. Conclusion. The results obtained indicate that the long-term effects of neonatal stress may be associated with a change in antidepressant sensitivity or an increase in development of unwanted adverse reactions. Keywords: early life stress, depression, antidepressants, fluoxetine, rats. Отдаленные последствия нарушения перинатального развития весьма значительны и не только проявляются в период новорожденности и в первые годы жизни, но и сохраняются в период онтогенеза. Данные о влиянии каких-либо пренатальных факторов на чувствительность половозрелого организма к действию лекарственных веществ в доступной литературе представлены незначительно. Цель исследования – оценить роль стресса раннего периода жизни в формировании индивидуальной чувствительности к действию антидепрессантов. Материалы и методы. Эксперименты проведены на половозрелых беспородных крысах-самцах. Для моделирования стресса раннего периода жизни использовали стандартный протокол, подразумевающий отделение детенышей от матери со 2-го по 15-й дни постнатального периода на 3 ч в условиях инкубатора. В половозрелом возрасте проводили оценку уровня тревожности, двигательной и ориентировочно-исследовательской активности крыс в условиях теста открытого поля, теста Порсолта и теста «Потребление раствора сахарозы». Затем в течение 14 дней крысам внутрижелудочно вводили раствор флуоксетина (10 мг/кг/сут), после чего обследование повторяли в том же объеме. Статистический анализ результатов исследования проводили с использованием U-критерия Манна–Уитни для сравнения несвязанных групп и критерия Вилкоксона для сравнения связанных групп. Результаты. У животных, переживших стресс раннего периода жизни, флуоксетин не оказывал выраженного антидепрессантного действия. У данных животных в тесте Порсолта преобладало пассивное плавание, без изменения длительности иммобильности. При тестировании в открытом поле наблюдалось резкое повышение числа актов фризинга, что является показателем повышенного уровня тревожности у животных. Выводы. Полученные результаты свидетельствуют о том, что отдаленные последствия неонатального стресса могут быть связанны с изменением чувствительности к действию антидепрессантов или повышением риска развития нежелательных побочных реакций. Ключевые слова: стресс раннего периода жизни, депрессия, антидепрессанты, флуоксетин, крысы.


2020 ◽  
Author(s):  
Andrew C. Bishop ◽  
Kimberly D. Spradling-Reeves ◽  
Robert E. Shade ◽  
Kenneth J. Lange ◽  
Shifra Birnbaum ◽  
...  

AbstractBackgroundPoor nutrition during development programs kidney function. No studies on postnatal consequences of decreased perinatal nutrition exist in nonhuman primates (NHP) for translation to human renal disease. Our baboon model of moderate maternal nutrient restriction (MNR) produces intrauterine growth restricted (IUGR) and programs renal fetal phenotype. We hypothesized that the IUGR phenotype persists postnatally, influencing responses to a high-fat, high-carbohydrate, high-salt (HFCS) diet.MethodsPregnant baboons ate chow (Control; CON) or 70% of control intake (MNR) from 0.16 gestation through lactation. MNR offspring were IUGR at birth. At weaning, all offspring (CON and IUGR females and males, n=3/group) ate chow. At ~4.5 years of age, blood, urine, and kidney biopsies were collected before and after a 7-week HFCS diet challenge. Kidney function, unbiased kidney gene expression, and untargeted urine metabolomics were evaluated.ResultsIUGR female and male kidney transcriptome and urine metabolome differed from CON at 3.5 years, prior to HFCS. After the challenge, we observed sex-specific and fetal exposure-specific responses in urine creatinine, urine metabolites, and renal signaling pathways.ConclusionsWe previously showed mTOR signaling dysregulation in IUGR fetal kidneys. Before HFCS, gene expression analysis indicated that dysregulation persists postnatally in IUGR females. IUGR male offspring response to HFCS showed uncoordinated signaling pathway responses suggestive of proximal tubule injury. To our knowledge, this is the first study comparing CON and IUGR postnatal juvenile NHP and the impact of fetal and postnatal life caloric mismatch. Perinatal history needs to be taken into account when assessing renal disease risk.


Endocrinology ◽  
2008 ◽  
Vol 150 (4) ◽  
pp. 1791-1800 ◽  
Author(s):  
Gabriela P. Finkielstain ◽  
Patricia Forcinito ◽  
Julian C. K. Lui ◽  
Kevin M. Barnes ◽  
Rose Marino ◽  
...  

Mammalian somatic growth is rapid in early postnatal life but then slows and eventually ceases in multiple tissues. We hypothesized that there exists a postnatal gene expression program that is common to multiple tissues and is responsible for this coordinate growth deceleration. Consistent with this hypothesis, microarray analysis identified more than 1600 genes that were regulated with age (1 vs. 4 wk) coordinately in kidney, lung, and heart of male mice, including many genes that regulate proliferation. As examples, we focused on three growth-promoting genes, Igf2, Mest, and Peg3, that were markedly down-regulated with age. In situ hybridization revealed that expression occurred in organ-specific parenchymal cells and suggested that the decreasing expression with age was due primarily to decreased expression per cell rather than a decreased number of expressing cells. The declining expression of these genes was slowed during hypothyroidism and growth inhibition (induced by propylthiouracil at 0–5 wk of age) in male rats, suggesting that the normal decline in expression is driven by growth rather than by age per se. We conclude that there exists an extensive genetic program occurring during postnatal life. Many of the involved genes are regulated coordinately in multiple organs, including many genes that regulate cell proliferation. At least some of these are themselves apparently regulated by growth, suggesting that, in the embryo, a gene expression pattern is established that allows for rapid somatic growth of multiple tissues, but then, during postnatal life, this growth leads to negative-feedback changes in gene expression that in turn slow and eventually halt somatic growth, thus imposing a fundamental limit on adult body size.


2018 ◽  
Vol 33 (1) ◽  
pp. 770-781 ◽  
Author(s):  
Philippe Aubert ◽  
Elena Oleynikova ◽  
Hina Rizvi ◽  
Marième Ndjim ◽  
Catherine Le Berre-Scoul ◽  
...  

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ian R Lanza ◽  
Daniel K Short ◽  
Kevin R Short ◽  
Yan W Asmann ◽  
Sreekumar Raghavakaimal ◽  
...  

2002 ◽  
Vol 92 (3) ◽  
pp. 1191-1198 ◽  
Author(s):  
Joseph S. Tash ◽  
Donald C. Johnson ◽  
George C. Enders

The International Space Station will allow extended habitation in space and long-term exposure to microgravity (μG). A concern is the impact of long-term μG exposure on the ability of species to reproduce. The model often used to simulate μG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partial constriction of the inguinal canal with sutures. All parameters were compared at the end of the 6-wk experiment. Testicular weights and spermatogenesis were significantly reduced by HLS, such that no spermatogenic cells beyond round spermatids were present and epididymides were devoid of mature sperm. In many tubules, loss of all germ cells, except a few spermatogonia, resulting in histopathology similar to the Sertoli cell, was observed. Spermatogenesis appeared unaffected in control and TO animals. Sertoli and Leydig cell appearance, testosterone, luteinizing hormone, and follicle-stimulating hormone levels, and epididymal and seminal vesicle weight were unchanged by HLS. Cortisone was not elevated by HLS; thus stress may not be a factor. These results demonstrate that spermatogenesis is severely inhibited by long-term HLS, whereas testicular androgen production is not. These results have significant implications regarding serious effects of long-term exposure to μG on the reproductive capability of scrotal mammals, including humans.


Sign in / Sign up

Export Citation Format

Share Document