scholarly journals Relaxin Affects Smooth Muscle Biophysical Properties and Mechanical Activity of the Female Mouse Colon

Endocrinology ◽  
2015 ◽  
Vol 156 (12) ◽  
pp. 4398-4410 ◽  
Author(s):  
Roberta Squecco ◽  
Rachele Garella ◽  
Eglantina Idrizaj ◽  
Silvia Nistri ◽  
Fabio Francini ◽  
...  

The hormone relaxin (RLX) has been reported to influence gastrointestinal motility in mice. However, at present, nothing is known about the effects of RLX on the biophysical properties of the gastrointestinal smooth muscle cells (SMCs). Other than extending previous knowledge of RLX on colonic motility, the purpose of this study was to investigate the ability of the hormone to induce changes in resting membrane potential (RMP) and on sarcolemmal ion channels of colonic SMCs of mice that are related to its mechanical activity. To this aim, we used a combined mechanical and electrophysiological approach. In the mechanical experiments, we observed that RLX caused a decay of the basal tone coupled to an increase of the spontaneous contractions, completely abolished by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (ODQ). The electrophysiological results indicate for the first time that RLX directly affects the SMC biophysical properties inducing hyperpolarization of RMP and cycles of slow hyperpolarization/depolarization oscillations. The effects of RLX on RMP were abolished by ODQ as well as by a specific inhibitor of the cGMP-dependent protein kinase, KT5823. RLX reduced Ca2+ entry through the voltage-dependent L-type channels and modulated either voltage- or ATP-dependent K+ channels. These effects were abolished by ODQ, suggesting the involvement of the nitric oxide/guanylate cyclase pathway in the effects of RLX on RMP and ion channel modulation. These actions of RLX on membrane properties may contribute to the regulation of the proximal colon motility by the nitric oxide/cGMP/cGMP-dependent protein kinase pathway.

2007 ◽  
Vol 292 (1) ◽  
pp. C432-C439 ◽  
Author(s):  
Allison M. Given ◽  
Ozgur Ogut ◽  
Frank V. Brozovich

During nitric oxide signaling, type Iα cGMP-dependent protein kinase (PKGIα) activates myosin light chain (MLC) phosphatase through an interaction with the 130-kDa myosin targeting subunit (MYPT1), leading to dephosphorylation of 20-kDa MLC and vasodilatation. It has been suggested that the MYPT1-PKGIα interaction is mediated by the COOH-terminal leucine zipper (LZ) of MYPT1 and the NH2-terminal LZ of PKGIα (HK Surks and ME Mendelsohn. Cell Signal 15: 937–944, 2003; HK Surks et al. Science 286: 1583–1587, 1999), but we previously showed that PKGIα interacts with LZ-positive (LZ+) and LZ-negative (LZ−) MYPT1 isoforms ( 13 ). Interestingly, PKGIα is known to preferentially bind to RR and RK motifs (WR Dostmann et al. Proc Natl Acad Sci USA 97: 14772–14777, 2000), and there is an RK motif within the aa 888–928 sequence of MYPT1 in LZ+ and LZ− isoforms. Thus, to localize the domain of MYPT1 important for the MYPT1-PKGIα interaction, we designed four MYPT1 fragments that contained both the aa 888–928 sequence and the downstream LZ domain (MYPT1FL), lacked both the aa 888–928 sequence and the LZ domain (MYPT1TR), lacked only the aa 888–928 sequence (MYPT1SO), or lacked only the LZ domain (MYPT1TR2). Using coimmunoprecipitation, we found that only the fragments containing the aa 888–928 sequence (MYPT1FL and MYPT1TR2) were able to form a complex with PKGIα in avian smooth muscle tissue lysates. Furthermore, mutations of the RK motif at aa 916–917 (R916K917) to AA decreased binding of MYPT1 to PKGIα in chicken gizzard lysates; these mutations had no effect on binding in chicken aorta lysates. However, mutation of R916K917 to E916E917 eliminated binding, suggesting that one factor important for the PKGIα-MYPT1 interaction is the charge at aa 916–917. These results suggest that, during cGMP-mediated signaling, aa 888–928 of MYPT1 mediate the PKGIα-MYPT1 interaction.


1999 ◽  
Vol 274 (14) ◽  
pp. 9489-9493 ◽  
Author(s):  
Soha D. Idriss ◽  
Tanima Gudi ◽  
Dareen E. Casteel ◽  
Vladimir G. Kharitonov ◽  
Renate B. Pilz ◽  
...  

2011 ◽  
Vol 301 (4) ◽  
pp. C929-C937 ◽  
Author(s):  
Kumar U. Kotlo ◽  
Bahar Hesabi ◽  
Robert S. Danziger

MicroRNAs (miRs) are endogenous small RNA molecules that suppress gene expression by binding to complementary sequences in the 3′ untranslated regions of their target genes. miRs have been implicated in many diseases, including heart failure, ischemic heart disease, hypertension, cardiac hypertrophy, and cancers. Nitric oxide (NO) and atrial natriuretic peptide (ANP) are potent vasorelaxants whose actions are mediated through receptor guanylyl cyclases and cGMP-dependent protein kinase. The present study examines miRs in signaling by ANP and NO in vascular smooth muscle cells. miR microarray analysis was performed on human vascular smooth muscle cells (HVSMC) treated with ANP (10 nM, 4 h) and S-nitroso- N-acetylpenicillamine (SNAP) (100 μM, 4 h), a NO donor. Twenty-two shared miRs were upregulated, and 21 shared miRs were downregulated, by both ANP and SNAP ( P < 0.05). Expression levels of four miRs (miRs-21, -26b, -98, and -1826), which had the greatest change in expression, as determined by microarray analysis, were confirmed by quantitative RT-PCR. Rp-8-Br-PET-cGMPS, a cGMP-dependent protein kinase-specific inhibitor, blocked the regulation of these miRs by ANP and SNAP. 8-bromo-cGMP mimicked the effect of ANP and SNAP on their expression. miR-21 was shown to inhibit HVSMC contraction in collagen gel lattice contraction assays. We also identified by computational algorithms and confirmed by Western blot analysis new intracellular targets of miR-21, i.e., cofilin-2 and myosin phosphatase and Rho interacting protein. Transfection with pre-miR-21 contracted cells and ANP and SNAP blocked miR-21-induced HVSMC contraction. Transfection with anti-miR-21 inhibitor reduced contractility of HVSMC ( P < 0.05). The present results implicate miRs in NO and ANP signaling in general and miR-21 in particular in cGMP signaling and vascular smooth muscle cell relaxation.


1996 ◽  
Vol 109 (10) ◽  
pp. 2499-2508 ◽  
Author(s):  
J.E. Murphy-Ullrich ◽  
M.A. Pallero ◽  
N. Boerth ◽  
J.A. Greenwood ◽  
T.M. Lincoln ◽  
...  

Focal adhesions are specialized regions of cell membranes that are foci for the transmission of signals between the outside and the inside of the cell. Intracellular signaling events are important in the organization and stability of these structures. In previous work, we showed that the counter-adhesive extracellular matrix proteins, thrombospondin, tenascin, and SPARC, induce the disassembly of focal adhesion plaques and we identified the active regions of these proteins. In order to determine the mechanisms whereby the anti-adhesive matrix proteins modulate cytoskeletal organization and focal adhesion integrity, we examined the role of protein kinases in mediating the loss of focal adhesions by these proteins. Data from these studies show that cGMP-dependent protein kinase is necessary to mediate focal adhesion disassembly triggered by either thrombospondin or tenascin, but not by SPARC. In experiments using various protein kinase inhibitors, we observed that selective inhibitors of cyclic GMP-dependent protein kinase, KT5823 and Rp-8-Br-cGMPS, blocked the effects of both the active sequence of thrombospondin 1 (hep I) and the alternatively-spliced segment (TNfnA-D) of tenascin-C on focal adhesion disassembly. Moreover, early passage rat aortic smooth muscle cells which have high levels of cGMP-dependent protein kinase were sensitive to hep I treatment, in contrast to passaged cGMP-dependent protein kinase deficient cells which were refractory to hep I or TNfnA-D treatment, but were sensitive to SPARC. Transfection of passaged smooth muscle cells with the catalytic domain of PKG I alpha restored responsiveness to hep I and TNfnA-D. While these studies show that cGMP-dependent protein kinase activity is necessary for thrombospondin and tenascin-mediated focal adhesion disassembly, kinase activity alone is not sufficient to induce disassembly as transfection of the catalytic domain of the kinase in the absence of additional stimuli does not result in loss of focal adhesions.


Sign in / Sign up

Export Citation Format

Share Document