scholarly journals The Two Populations of Kisspeptin Neurons Are Involved in the Ram-Induced LH Pulsatile Secretion and LH Surge in Anestrous Ewes

Endocrinology ◽  
2017 ◽  
Vol 158 (11) ◽  
pp. 3914-3928 ◽  
Author(s):  
Claude Fabre-Nys ◽  
Juliette Cognié ◽  
Laurence Dufourny ◽  
Meriem Ghenim ◽  
Stephanie Martinet ◽  
...  
2000 ◽  
Vol 167 (3) ◽  
pp. 453-463 ◽  
Author(s):  
JL Crawford ◽  
RJ Currie ◽  
AS McNeilly

The pattern of replenishment of LH secretory granule stores in sheep pituitary gonadotrophs, after an induced LH surge, was determined by immunogold localisation at the ultrastructural level by electron microscopy. Twenty-four Welsh Mountain ewes were initially synchronised with progestagen devices for 14 days before luteolysis was induced by a prostaglandin F(2 alpha) analogue, cloprostenol. A further 24 h later, a preovulatory LH surge was induced by intravenous injection of a GnRH agonist, buserelin. Animals were divided into four groups (n=6) and blood sampled at 2 h intervals from 4 h prior, to 18 h after, buserelin administration and then at infrequent intervals (1 to 8 h) thereafter until death. Pulse profiles of LH were also obtained by an additional collection of blood samples within a 6 h window directly preceding death. Groups of animals were killed at 24, 48, 72 or 96 h after buserelin treatment. Pituitaries were dissected and processed for transmission electron microscopy and frozen for later molecular biological analysis. A characteristic preovulatory surge of LH was observed in all animals. The cytoplasm of gonadotrophs, in animals killed 24 h after buserelin treatment, was completely empty of secretory granules. This was associated with diminutive pituitary LH content, low pituitary GnRH binding levels and an almost complete absence (one pulse in one animal) of LH pulsatile secretion. Despite the lack of apparent secretory activity, clusters of exposed LH beta label present within the cytoplasm at this time and constant LHbeta mRNA expression levels irrespective of tissue collection time, suggest that the cell is actively synthesising LHbeta. The formation of sparse numbers of small LH beta immuno-labelled electron-dense secretory granules was apparent at 48 h after buserelin treatment, and replenishment of LH beta immuno-labelled granule stores continued until total granule numbers had increased two-fold (P<0.01) by 96 h post-treatment. Affiliated with granule replenishment was a significant increase in pituitary LH content (P<0.01), pituitary GnRH binding levels (P<0.01) and the restoration of LH pulsatile secretion. Despite the replenishment of granule stores with time, cytoplasmic area did not vary. These results suggest that restoration of pulsatile LH secretion after a preovulatory LH surge is related to replenishment of LH beta secretory granule stores and an increase in GnRH binding levels.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Eulalia A Coutinho ◽  
Lourdes A Esparza ◽  
Shreyana Bolleddu ◽  
Alexander S Kauffman

Abstract Puberty is a critical developmental period marking the transition to adulthood and attainment of reproductive capability. A hallmark of puberty is increased pulsatile secretion of pituitary luteinizing hormone (LH) which is itself driven by increased gonadotropin-releasing hormone (GnRH) from the forebrain. The mechanisms governing GnRH neuron activation at puberty still remain unclear, but likely include enhanced stimulation from upstream reproductive neural circuits, including kisspeptin neurons. Kisspeptin is a potent stimulator of GnRH and is required for proper puberty onset. However, the specific brain site(s) from where kisspeptin signaling arises to trigger puberty remain unclarified. Kisspeptin is expressed in two primary nuclei in the hypothalamus, the arcuate nucleus (ARC) and anteroventral periventricular (AVPV) region. Studies suggest that, in adulthood, ARC Kiss1 neurons are involved in driving pulsatile secretion of GnRH (and hence, LH) in both sexes whereas AVPV Kiss1 neurons participate in the preovulatory GnRH/LH surge in females. However, the specific role of either kisspeptin neuron population in puberty onset still remains unknown. We previously showed that both kisspeptin populations show increased Kiss1 gene expression across the pubertal period, yet whether just one or both (or neither) population is needed for puberty to occur has not been determined. Here, we sought to tease out the role—if any—of ARC and AVPV Kiss1 neurons in the pubertal onset process. Since ARC Kiss1 neurons are abundant in both sexes and drive pulsatile GnRH secretion in adulthood, we hypothesized that ARC Kiss1 neurons are necessary for normal puberty onset and, conversely, that AVPV Kiss1 neurons are not sufficient on their own to induce normal puberty. To test this hypothesis, we used a Cre-specific diphtheria toxin approach to ablate just ARC Kiss1 neurons in juvenile mice (~ 2 weeks old) while leaving AVPV Kiss1 neurons intact. Preliminary data thus far indicates that site specific ablation of just ARC Kiss1 neurons during the juvenile period significantly delays puberty onset in both sexes, as measured by vaginal opening, first estrous, and preputial separation. In addition, selective ARC Kiss1 neuron ablation in juvenile life diminishes pulsatile LH secretion levels measured in adulthood, but does not alter LH surge generation in adult females. These preliminary findings empirically demonstrate that, in mice, ARC Kiss1 neurons are required for proper activation of the reproductive axis during puberty but not the LH surge in adulthood, and AVPV Kiss1 neurons are not sufficient to trigger normal pubertal onset.


Methodology ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Gregor Sočan

Abstract. When principal component solutions are compared across two groups, a question arises whether the extracted components have the same interpretation in both populations. The problem can be approached by testing null hypotheses stating that the congruence coefficients between pairs of vectors of component loadings are equal to 1. Chan, Leung, Chan, Ho, and Yung (1999) proposed a bootstrap procedure for testing the hypothesis of perfect congruence between vectors of common factor loadings. We demonstrate that the procedure by Chan et al. is both theoretically and empirically inadequate for the application on principal components. We propose a modification of their procedure, which constructs the resampling space according to the characteristics of the principal component model. The results of a simulation study show satisfactory empirical properties of the modified procedure.


2020 ◽  
pp. 207-214
Author(s):  
Akbar Fattahi

The Iranian species of the phyllodactylid geckos of the genus Asaccus are found only in the valleys of the Zagros Mountains, a region which represents an important area of endemism in western Iran. Recently, many relict species have been described from the central and southern parts of the Zagros Mountains, which were previously known as A. elisae. The recent descriptions of species within this complex suggest that diversity within the genus may be higher than expected and that its taxonomy and systematics should be revised. In the present study, phylogenetic relationships within the genus Asaccus were evaluated using two mitochondrial and one nuclear gene. Genetically, the genus shows high levels of variability. The molecular phylogeny of the genus suggests the presence of three main clades along the Zagros Mountains with the southern population (from the Hormozgan province) and one clade (A. sp8 and A. sp9) being sister taxon to A. montanus from UAE. The remaining samples are separated into two reciprocally monophyletic groups: the northern (Kurdistan, Kermanshah and Ilam provinces) and the central (Lorestan, Khuzestan, Kohgilouye-Bouyer Ahmad and Fars provinces) Zagros groups. The results of the present study suggest that populations attributed to A. elisae in Iran correspond to distinct lineages with high genetic distances. In brief, our results suggest that the genus needs a major taxonomical revision The Arabian origin of the genus has not been confirmed, because two populations from Zagros were located within the A. montanus, A. gallagheri and A. platyrhynchus clade. Further morphological analyses are needed to systematically define each genetic lineage as a new taxon.


Author(s):  
Hussein M. Khaeim ◽  
Anthony Clark ◽  
Tom Pearson ◽  
Dr. David Van Sanford

Head scab is historically a devastating disease affecting not just all classes of wheat but also barley and other small grains around the world. Fusarium head blight (FHB), or head scab, is caused most often by Fusarium graminearum (Schwabe), (sexual stage – Gibberella zeae) although several Fusarium spp. can cause the disease. This study was conducted to determine the effect of mass selection for FHB resistance using an image-based optical sorter. lines were derived from the C0 and C2 of two populations to compare genetic variation within populations with and without sorter selection. Our overall hypothesis is that sorting grain results in improved Fusarium head blight resistance. Both of the used wheat derived line populations have genetic variation, and population 1 has more than population 17. They are significantly different from each other for fusarium damged kernel (FDK), deoxynivalenol (DON), and other FHB traits. Although both populations are suitable to be grown for bulks, population 1 seems better since it has more genetic variation as well as lower FDK and DON, and earlier heading date. Lines within each population were significantly different and some lines in each population had significantly lower FDK and DON after selection using an optical sorter. Some lines had significant reduction in both FDK and DON, and some others had either FDK or DON reduction. Lines of population 1 that had significant reduction, were more numerous than in population 17, and FDK and DON reduction were greater.


1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S92-S93
Author(s):  
C. HIEMKE ◽  
A. SCHMIDT ◽  
R. GHRAF
Keyword(s):  

Reproduction ◽  
2000 ◽  
pp. 391-396 ◽  
Author(s):  
AH Duittoz ◽  
M Batailler

The aim of this study was to investigate the development of pulsatile GnRH secretion by GnRH neurones in primary cultures of olfactory placodes from ovine embryos. Culture medium was collected every 10 min for 8 h to detect pulsatile secretion. In the first experiment, pulsatile secretion was studied in two different sets of cultures after 17 and 24 days in vitro. In the second experiment, a set of cultures was tested after 10, 17 and 24 days in vitro to investigate the development of pulsatile GnRH secretion in each individual culture. This study demonstrated that (i) primary cultures of GnRH neurones from olfactory explants secreted GnRH in a pulsatile manner and that the frequency and mean interpulse duration were similar to those reported in castrated ewes, and (ii) pulsatile secretion was not present at the beginning of the culture but was observed between 17 and 24 days in vitro, indicating the maturation of individual neurones and the development of their synchronization.


Sign in / Sign up

Export Citation Format

Share Document