The Production of Transforming Growth Factor-β by Chick Growth Plate Chondrocytes in Short Term Monolayer Culture*

Endocrinology ◽  
1990 ◽  
Vol 127 (4) ◽  
pp. 1941-1947 ◽  
Author(s):  
DANIEL E. GELB ◽  
RANDY N. ROSIER ◽  
J. EDWARD PUZAS
1996 ◽  
Vol 149 (2) ◽  
pp. 277-285 ◽  
Author(s):  
C Farquharson ◽  
A S Law ◽  
E Seawright ◽  
D W Burt ◽  
C C Whitehead

Abstract 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) and transforming growth factor-β (TGF-β) are both important regulators of chondrocyte growth and differentiation. We report here that 1,25(OH)2D3 differentially regulates the expression of the genes for TGF-β1 to -β3 and the secretion of the corresponding proteins in cultured chick chondrocytes. Confluent growth plate chondrocytes were serum-deprived and cultured in varying concentrations of 1,25(OH)2D3. Cells were assayed for TGF-β mRNA and conditioned medium was assayed for TGF-β activity and isoform composition. Active TGF-β was only detected in 10−8m 1,25(OH)2D3-treated cultures (8·37 ng active TGF-β/mg protein). There was a significant decrease in total (latent+active) TGF-β activity in conditioned medium of 10−12 m (23·4%; P<0·05) and 10−10 m (20·7%; P<0·05) 1,25(OH)2D3-treated cultures but 10−8 m 1,25(OH)2D3 significantly increased (30·9%; P<0·01) TGF-β activity. The amounts of TGF-β1, -β2 and -β3 isoforms produced were similar in control, 10−10 or 10−12m 1,25(OH)2D3-treated cultures but the conditioned medium of 10−8 m 1,25(OH)2D3-treated cultures contained significantly higher amounts of all three isoforms. Quantification of TGF-β mRNA demonstrated differential control of TGF-β gene expression with TGF-β1 and -β3 mRNA levels reduced by all concentrations of 1,25(OH)2D3 examined (10−8, 10−10 and 10−12 m) whilst TGF-β2 mRNA concentrations were elevated. Our results indicated that 1,25(OH)2D3 regulates chick growth plate chondrocyte TGF-β secretion and mRNA expression in a concentration-dependent and isoform-specific manner. This interaction may be important in the regulation of chondrocyte metabolism and endochondral bone growth. Journal of Endocrinology (1996) 149, 277–285


Endocrinology ◽  
1988 ◽  
Vol 122 (6) ◽  
pp. 2953-2961 ◽  
Author(s):  
REGIS J. O’KEEFE ◽  
J. EDWARD PUZAS ◽  
JOHN S. BRAND ◽  
RANDY N. ROSIER

Bone ◽  
1987 ◽  
Vol 8 (4) ◽  
pp. 259-262 ◽  
Author(s):  
P.R. Elford ◽  
H.L. Guenther ◽  
R. Felix ◽  
M.G. Cecchini ◽  
H. Fleisch

2002 ◽  
Vol 277 (51) ◽  
pp. 50112-50120 ◽  
Author(s):  
Ming Shen ◽  
Eri Yoshida ◽  
Weiqun Yan ◽  
Takeshi Kawamoto ◽  
Ketut Suardita ◽  
...  

The mRNA level of basic helix-loop-helix transcription factor DEC1 (BHLHB2)/Stra13/Sharp2 was up-regulated during chondrocyte differentiation in cultures of ATDC5 cells and growth plate chondrocytes, and in growth plate cartilagein vivo. Forced expression of DEC1 in ATDC5 cells induced chondrogenic differentiation, and insulin increased this effect of DEC1 overexpression. Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) suppressed DEC1 expression and the differentiation of ATDC5 cells, but DEC1 overexpression antagonized this inhibitory action of PTH/PTHrP. Transforming growth factor-β or bone morphogenetic protein-2, as well as insulin, induced DEC1 expression in ATDC5 cultures where it induced chondrogenic differentiation. In pellet cultures of bone marrow mesenchymal stem cells exposed to transforming growth factor-β and insulin, DEC1 was induced at the earliest stage of chondrocyte differentiation and also at the hypertrophic stage. Overexpression of DEC1 in the mesenchymal cells induced the mRNA expressions of type II collagen, Indian hedgehog, and Runx2, as well as cartilage matrix accumulation; overexpression of DEC1 in growth plate chondrocytes at the prehypertrophic stage increased the mRNA levels of Indian hedgehog, Runx2, and type X collagen, and also increased alkaline phosphatase activity and mineralization. To our knowledge, DEC1 is the first transcription factor that can promote both chondrogenic differentiation and terminal differentiation.


Sign in / Sign up

Export Citation Format

Share Document