One Day of Corticosterone Treatment Via the Drinking Water Is Sufficient To Disrupt ACTH and Glucose Rhythmicity, and Suppresses Dark-Phase 5-HT-Neuronal Activation in the Dorsal Raphe Nucleus

2011 ◽  
pp. P3-519-P3-519
Author(s):  
Nina C Donner ◽  
Christian D Montoya ◽  
Christopher A Lowry
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Joanna Sowa ◽  
Magdalena Kusek ◽  
Bartosz Bobula ◽  
Grzegorz Hess ◽  
Krzysztof Tokarski

Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects in human patients and ameliorates depressive-like behavioral effects of chronic stress in animal models. Chronic stress and elevated corticosterone levels have been shown to modify serotonin (5-HT) neurotransmission, and ketamine’s antidepressant-like activity involves a 5-HT-dependent mechanism. However, it is not known if and how ketamine affects the electrophysiological characteristics of neurons and synaptic transmission within the dorsal raphe nucleus (DRN), the main source of 5-HT forebrain projections. Our study was aimed at investigating the effects of a single ketamine administration on excitatory and inhibitory transmission in the DRN of rats which had previously been administered corticosterone twice daily for 7 days. Spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) were then recorded from DRN projection cells in ex vivo slice preparations obtained 24 h after ketamine injection. Repeated corticosterone administration increased sEPSC frequency and decreased sIPSC frequency in DRN projection cells. There were no changes either in the amplitude of postsynaptic currents or in the excitability of these cells. In slices prepared from rats with ketamine administered after the end of corticosterone treatment, the frequencies of sEPSCs and sIPSCs were similar to those in control preparations. These data indicate that a single administration of ketamine reversed the effects of corticosterone on excitatory and inhibitory transmission in the DRN.


2010 ◽  
Vol 473 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Ali Jahanshahi ◽  
Lee Wei Lim ◽  
Harry W.M. Steinbusch ◽  
Veerle Visser-Vandewalle ◽  
Yasin Temel

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A12-A12
Author(s):  
Jianhua Zhang ◽  
Mingchu Xi ◽  
Simon Fung ◽  
Charles Tobin ◽  
Sharon Sampogna ◽  
...  

Abstract Introduction Our previous study has shown that there is a direct connection between GABAergic neurons in the nucleus pontis oralis (NPO) and neurons of the dorsal raphe nucleus (DR), providing a morphological basis for the hypothesis that GABAergic inhibitory processes in NPO play an important role in the generation and maintenance of wakefulness as well as active (REM) sleep through the interaction with neurons in the DR. However, the target of such a GABAergic projection from the NPO within the DR is unknown. In the present study, a double-fluorescent labeling technique was employed to examine the target of GABAergic inputs to the DR. Methods Adult cats were deeply anesthetized and perfused transcardially. Subsequently, the brainstem containing the DR was removed, postfixed and cut into 15 μm coronal sections with a Reichert-Jung cryostat. The sections were immunostained with antibodies against GABA-A or GABA-B receptors and GABA following the procedure of double fluorescence immunohistochemistry. Results Under fluorescence microscopy, a large number of neurons were labeled with antibodies against either GABA-A receptor or GABA-B receptor. In addition, neurons labeled with antibody against GABA were observed in the DR. With double fluorescence immunohistochemical techniques, some neurons labeled by anti-GABA antibody were also stained with antibodies against GABA-A or GABA-B receptors. Conclusion The expression of GABA-A or GABA-B receptors by GABAergic neurons in the DR indicates that GABAergic neurons in the DR receive GABAergic inputs. Our previous study has demonstrated that these GABAergic inputs are from the NPO. These data provide a morphological foundation to support our hypothesis that, during wakefulness, NPO GABAergic “Executive” neurons suppress “Second-Order” GABAergic neurons in the DR, which, in turn, activate (disinhibit) serotonergic wake-on neurons in this nucleus. Support (if any) NS092383


Sign in / Sign up

Export Citation Format

Share Document