fluorescence immunohistochemistry
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A8.2-A9
Author(s):  
NC Blessin ◽  
E Bady ◽  
T Mandelkow ◽  
C Yang ◽  
J Raedler ◽  
...  

BackgroundThe quantification of PD-L1 (programmed cell death ligand 1) has been used to predict patient’s survival, to characterize the tumor immune microenvironment, and to predict response to immune checkpoint therapies. However, a framework to assess the PD-L1 status with a high interobserver reproducibility on tumor cells and different types of immune cells has yet to be established.Materials and MethodsTo study the impact of PD-L1 expression on the tumor immune microenvironment and patient outcome, a framework for fully automated PD-L1 quantification on tumor cells and immune cells was established and validated. Automated PD-L1 quantification was facilitated by incorporating three different deep learning steps for the analysis of more than 80 different neoplasms from more than 10’000 tumor specimens using a bleach & stain 15-marker multiplex fluorescence immunohistochemistry panel (i.e., PD-L1, PD-1, CTLA-4, panCK, CD68, CD163, CD11c, iNOS, CD3, CD8, CD4, FOXP3, CD20, Ki67, CD31). Clinicopathological parameter were available for more than 30 tumor entities and overall survival data were available for 1517 breast cancer specimens.ResultsComparing the automated deep-learning based PD-L1 quantification with conventional brightfield PD-L1 data revealed a high concordance in tumor cells (p<0.0001) as well as immune cells (p<0.0001) and an accuracy of the automated PD-L1 quantification ranging from 90% to 95.2%. Across all tumor entities, the PD-L1 expression level was significantly higher in distinct macrophage/dendritic cell (DC) subsets (identified by CD68, CD163, CD11c, iNOS; p<000.1) and in macrophages/DCs located in the Stroma (p<0.0001) as compared to intratumoral macrophages/DC subsets. Across all different tumor entities, the PD-L1 expression was highly variable and distinct PD-L1 driven immune phenotypes were identified based on the PD-L1 intensity on both tumor and immune cells, the distance between non-exhausted T-cell subsets (i.e. PD-1 and CTLA-4 expression on CD3+CD8+ cytotoxic T-cells, CD3+CD4+ T-helper cells, CD3+CD4+FOXP3+ regulatory T-cells) and tumor cells as well as macrophage/(DC) subtypes. In breast cancer, the PD-L1 fluorescence intensity on tumor cells showed a significantly higher predictive performance for overall survival with an area under receiver operating curves (AUC) of 0.72 (p<0.0001) than the percentage of PD-L1+ tumor cells (AUC: 0.54). In PD-L1 positive as well as negative breast cancers a close spatial relationship between T- cell subsets (CD3+CD4±CD8±FOXP3±PD-1±CTLA-4±) and Macrophage/DC subsets (CD68±CD163±CD11c±iNOS) was found prognostic relevant (p<0.0001).ConclusionsIn conclusion, multiplex immunofluorescence PD-L1 assessment provides cutoff-free/continuous PD-L1 data which are superior to the conventional percentage of PD-L1+ tumor cells and of high prognostic relevance. The combined analysis of spatial PD-L1/PD-1 data and more than 20 different immune cell subtypes of the immune tumor microenvironment revealed distinct PD-L1 immune phenotypes.Disclosure InformationN.C. Blessin: None. E. Bady: None. T. Mandelkow: None. C. Yang: None. J. Raedler: None. R. Simon: None. C. Fraune: None. M. Lennartz: None. S. Minner: None. E. Burandt: None. D. Höflmayer: None. G. Sauter: None. S.A. Weidemann: None.


2021 ◽  
Vol 15 ◽  
Author(s):  
Renata M. Felippe ◽  
Gabriel M. Oliveira ◽  
Rafaela S. Barbosa ◽  
Betina D. Esteves ◽  
Beatriz M. S. Gonzaga ◽  
...  

Aggression is defined as hostile behavior that results in psychological damage, injury and even death among individuals. When aggression presents itself in an exacerbated and constant way, it can be considered escalating or pathological. The association between social stress and the emergence of exacerbated aggressiveness is common and is suggested to be interconnected through very complex neurobiological factors. For example, alterations in the expression of the dopaminergic receptors D1 and D2, reactive oxygen species (ROS) and the c-Fos protein in the cortex have been observed. Our objective was to analyze which factors are involved at the neurobiological level in the highly aggressive response of Swiss Webster adult male mice in a vivarium. In this work, we investigated the relationship among dopaminergic receptors, the production of ROS and the expression of c-Fos. Mice with exacerbated aggression were identified by the model of spontaneous aggression (MSA) based on the grouping of young mice and the regrouping of the same animals in adulthood. During the regrouping, we observed different categories of behavior resulting from social stress, such as (i) highly aggressive animals, (ii) defeated animals, and (iii) harmonic groups. To evaluate the dopaminergic system and the c-Fos protein, we quantified the expression of D1 and D2 dopaminergic receptors by Western blotting and fluorescence immunohistochemistry and that of the c-Fos protein by fluorescence immunohistochemistry. The possible production of ROS was also evaluated through the dihydroethidium (DHE) assay. The results showed that aggressive and subordinate mice showed a reduction in the expression of the D1 receptor, and no significant difference in the expression of the D2 receptor was observed between the groups. In addition, aggressive mice exhibited increased production of ROS and c-Fos protein. Based on our results, we suggest that exacerbated aggression is associated with social stress, dysregulation of the dopaminergic system and exacerbated ROS production, which leads to a state of cellular oxidative stress. The overexpression of c-Fos due to social stress suggests an attempt by the cell to produce antioxidant agents to reduce the toxic cellular concentration of ROS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachi Sugita ◽  
Masanori Yamato ◽  
Toshimitsu Hatabu ◽  
Yosky Kataoka

AbstractA high rate of glycolysis, one of the most common features of cancer, is used in positron emission tomography (PET) imaging to visualize tumor tissues using 18F-fluorodeoxyglucose (18F-FDG). Heterogeneous intratumoral distribution of 18F-FDG in tissues has been established in some types of cancer, and the maximum standardized uptake value (SUVmax) has been correlated with poor prognosis. However, the phenotype of cells that show high 18F-FDG accumulation in tumors remains unknown. Here, we combined quantitative micro-autoradiography with fluorescence immunohistochemistry to simultaneously visualize 18F-FDG distribution, the expression of multiple proteins, and hypoxic regions in the cancer microenvironment of a human A431 xenograft tumor in C.B-17/Icr-scid/scid mice. We found that the highest 18F-FDG accumulation was in cancer-derived cells undergoing epithelial-mesenchymal transition (EMT) in hypoxic regions, implicating these regions as a major contributor to increased glucose metabolism, as measured by 18F-FDG-PET.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A12-A12
Author(s):  
Jianhua Zhang ◽  
Mingchu Xi ◽  
Simon Fung ◽  
Charles Tobin ◽  
Sharon Sampogna ◽  
...  

Abstract Introduction Our previous study has shown that there is a direct connection between GABAergic neurons in the nucleus pontis oralis (NPO) and neurons of the dorsal raphe nucleus (DR), providing a morphological basis for the hypothesis that GABAergic inhibitory processes in NPO play an important role in the generation and maintenance of wakefulness as well as active (REM) sleep through the interaction with neurons in the DR. However, the target of such a GABAergic projection from the NPO within the DR is unknown. In the present study, a double-fluorescent labeling technique was employed to examine the target of GABAergic inputs to the DR. Methods Adult cats were deeply anesthetized and perfused transcardially. Subsequently, the brainstem containing the DR was removed, postfixed and cut into 15 μm coronal sections with a Reichert-Jung cryostat. The sections were immunostained with antibodies against GABA-A or GABA-B receptors and GABA following the procedure of double fluorescence immunohistochemistry. Results Under fluorescence microscopy, a large number of neurons were labeled with antibodies against either GABA-A receptor or GABA-B receptor. In addition, neurons labeled with antibody against GABA were observed in the DR. With double fluorescence immunohistochemical techniques, some neurons labeled by anti-GABA antibody were also stained with antibodies against GABA-A or GABA-B receptors. Conclusion The expression of GABA-A or GABA-B receptors by GABAergic neurons in the DR indicates that GABAergic neurons in the DR receive GABAergic inputs. Our previous study has demonstrated that these GABAergic inputs are from the NPO. These data provide a morphological foundation to support our hypothesis that, during wakefulness, NPO GABAergic “Executive” neurons suppress “Second-Order” GABAergic neurons in the DR, which, in turn, activate (disinhibit) serotonergic wake-on neurons in this nucleus. Support (if any) NS092383


2021 ◽  
Vol 69 (5) ◽  
pp. 349-364 ◽  
Author(s):  
Vashendriya V.V. Hira ◽  
Remco J. Molenaar ◽  
Barbara Breznik ◽  
Tamara Lah ◽  
Eleonora Aronica ◽  
...  

Glioblastoma usually recurs after therapy consisting of surgery, radiotherapy, and chemotherapy. Recurrence is at least partly caused by glioblastoma stem cells (GSCs) that are maintained in intratumoral hypoxic peri-arteriolar microenvironments, or niches, in a slowly dividing state that renders GSCs resistant to radiotherapy and chemotherapy. Because the subventricular zone (SVZ) is a major niche for neural stem cells (NSCs) in the brain, we investigated whether GSCs are present in the SVZ at distance from the glioblastoma tumor. We characterized the SVZ of brains of seven glioblastoma patients using fluorescence immunohistochemistry and image analysis. NSCs were identified by CD133 and SOX2 but not CD9 expression, whereas GSCs were positive for all three biomarkers. NSCs were present in all seven samples and GSCs in six out of seven samples. The SVZ in all samples were hypoxic and expressed the same relevant chemokines and their receptors as GSC niches in glioblastoma tumors: stromal-derived factor-1α (SDF-1α), C-X-C receptor type 4 (CXCR4), osteopontin, and CD44. In conclusion, in glioblastoma patients, GSCs are present at distance from the glioblastoma tumor in the SVZ. These findings suggest that GSCs in the SVZ niche are protected against radiotherapy and chemotherapy and protected against surgical resection due to their distant localization and thus may contribute to tumor recurrence after therapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qi Xin ◽  
Miaomiao Yuan ◽  
Wei Lv ◽  
Huanping Li ◽  
Xiaoxia Song ◽  
...  

Abstract Background Cystic echinococcosis (CE), caused by the larval stage of Echinococcus granulosus (sensu stricto), is a life-threatening but neglected zoonosis. Glycolytic enzymes are crucial molecules for the survival and development of E. granulosus. The aim of this study was to investigate the molecular characterization, immunogenicity, tissue distribution and serodiagnostic potential of E. granulosus hexokinase (EgHK), the first key enzyme in the glycolytic pathway. Methods EgHK was cloned and expressed in Escherichia coli. Specific serum antibodies were evaluated in mice immunized with recombinant EgHK (rEgHK). The location of EgHK in the larval stage of E. granulosus was determined using fluorescence immunohistochemistry, and the potential of rEgHK as a diagnostic antigen was investigated in patients with CE using indirect enzyme-linked immunosorbent assay (ELISA). Results Recombinant EgHK could be identified in the sera of patients with CE and in mouse anti-rEgHK sera. High titers of specific immunoglobulin G were induced in mice after immunization with rEgHK. EgHK was mainly located in the tegument, suckers and hooklets of protoscoleces and in the germinal layer and laminated layer of the cyst wall. The sensitivity and specificity of the rEgHK-ELISA reached 91.3% (42/46) and 87.8% (43/49), respectively. Conclusions We have characterized the sequence, structure and location of EgHK and investigated the immunoreactivity, immunogenicity and serodiagnostic potential of rEgHK. Our results suggest that EgHK may be a promising candidate for the development of vaccines against E. granulosus and an effective antigen for the diagnosis of human CE.


2021 ◽  
Vol 33 (2) ◽  
pp. 126
Author(s):  
F. A. Diaz ◽  
E. J. Gutierrez ◽  
B. A. Foster ◽  
P. T. Hardin ◽  
K. R. Bondioli

Reduced reproductive performance is one of the main effects caused by heat stress in cattle. Its negative effects have been observed at the transcriptional, biochemical, morphological, and developmental levels on the oocyte and embryo. There are no studies evaluating the effect of heat stress on the epigenetic profile of bovine oocytes and early embryos. The objective of this study was to evaluate the effect of invivo and invitro heat stress on DNA methylation and DNA hydroxymethylation in bovine MII oocytes, pronuclear, and 2- to 4-cell stage embryos. Seven Bos taurus crossbred nonpregnant, non-lactating beef cows located in Saint Gabriel, Louisiana (30.269746, −91.103357) were used for oocyte collection. Dominant follicle removal was performed 5 days before oocyte collection. Cumulus–oocyte complexes were collected by ovum pickup from follicles &gt;2mm. Samples were collected during the summer (August) and winter (February) (5 collections each). Three treatments were utilised: invivo heat stress (August samples), invitro heat stress (February samples subjected to 41°C during the first 12h of IVM and then to 38.5°C during the next 12h of IVM), and control (February samples IVM at 38.5°C). All oocytes collected per treatment were assigned to 3 developmental stages: MII oocytes, pronuclear, and 2- to 4-cell stage embryos. Embryos were obtained through standard IVF. DNA methylation and DNA hydroxymethylation was assessed by fluorescence immunohistochemistry utilising primary antibodies against 5′-methylcytosine and 5′-hydromethylcytosine and secondary antibodies Alexa Fluor 488 and Alexa Fluor 546, respectively. Samples were visualised with a fluorescence deconvolution microscope, and immunofluorescence data were expressed as corrected relative fluorescence per nucleus. Results were analysed by the Type III test of fixed effects and Tukey media separation utilising the Proc Glimmix of SAS 9.4 (P&lt;0.05). Maturation rate, 2 pronuclei (2PN) rate, cleavage rate, and 2- to 4-cell rate were analysed by Chi-square. There was no difference in maturation rate (88.19±7.57, 82.91±5.18, 94.51±5.04; P=0.2516), 2PN rate (79.34±10.23, 93.75±7.21, 81.74±12.53; P=0.1757), cleavage rate (79.26±2.69, 70.65±7.22, 81.85±16.65; P=0.2388) and 2- to 4-cell rate (69.38±7.83, 81.25±10.34, 61.11±11.69; P=0.4392) between invivo and invitro heat stress compared with control, respectively. No difference was found in DNA methylation (P=0.0537) or DNA hydroxymethylation (P=0.4632) between treatments in MII oocytes. When evaluating the paternal and maternal pronuclei, there was no difference in DNA methylation (P=0.9766; P=0.1954, respectively) or DNA hydroxymethylation (P=0.6440; P=0.1932, respectively) between invivo and invitro heat stress compared with control. Similarly, there was no difference in DNA methylation (P=0.0903) or DNA hydroxymethylation (P=0.2452) between treatments when evaluating the 2- to 4-cell embryos. In conclusion, we detected no effect of invivo or invitro heat stress on MII oocytes and early embryos when evaluating global DNA methylation and hydroxymethylation through fluorescence immunohistochemistry.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A27-A27
Author(s):  
J Zhang ◽  
S Sampogna ◽  
M Xi ◽  
S J Fung ◽  
C Tobin ◽  
...  

Abstract Introduction Our previous electrophysiologic data have provided compelling evidence that GABAergic processes in the nucleus pontis oralis (NPO) play a critical role in the generation and maintenance of wakefulness as well as active (REM) sleep (AS). We therefore hypothesized that one of the neuronal mechanisms of GABA actions in the NPO to promote wakefulness and suppress AS is due to a direct GABAergic inhibition of NPO neurons that generate AS (AS-generator neurons). However, the anatomical substrate for this inhibition is undetermined. Accordingly, the present study was undertaken to examine whether there is any direct interaction between GABAergic neurons and glutamatergic AS-generator neurons in the NPO. Methods Adult cats were deeply anesthetized and perfused transcardially. The brainstem containing the NPO was removed, postfixed and cut into 15 μm coronal sections with a Reichert-Jung cryostat. The sections were incubated with a mixture of a rabbit polyclonal antibodies against glutamine and GABA following the procedure of double fluorescence immunohistochemistry. Results There was a large number of neuronal somata labeled by anti-glutamine antibody and terminals labeled by anti-GABA antibody in the NPO. These glutamine-positive neurons were medium to large, multipolar cells (&gt; 20 μm), which resemble glutamatergic, AS-generator neurons that have been previously identified in the NPO. Specifically, majority of glutamatergic neuronal somata were closely apposed by multiple GABAergic terminals, indicating that AS-generator neurons in the NPO receive direct GABAergic inputs. Conclusion The present results demonstrate that a direct connection exists between glutamatergic AS-generator neurons and GABAergic processes in the NPO. These data provide the anatomical evidence which supports our hypothesis that the pontine GABAergic control of wakefulness and active sleep is partially mediated via GABAergic processes project to NPO AS-generator neurons that suppress the activity of these cells. Support NS092383


Sign in / Sign up

Export Citation Format

Share Document