scholarly journals IGF-Binding Protein-3-Induced Growth Inhibition and Apoptosis Do Not Require Cell Surface Binding and Nuclear Translocation in Human Breast Cancer Cells

Endocrinology ◽  
2002 ◽  
Vol 143 (7) ◽  
pp. 2693-2699 ◽  
Author(s):  
Alison J. Butt ◽  
Kristie A. Fraley ◽  
Sue M. Firth ◽  
Robert C. Baxter
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Fabiana Sélos Guerra ◽  
Ramon Guerra de Oliveira ◽  
Carlos Alberto Manssour Fraga ◽  
Claudia dos Santos Mermelstein ◽  
Patricia Dias Fernandes

2019 ◽  
Author(s):  
Virginia Tajadura-Ortega ◽  
Gennaro Gambardella ◽  
Alexandra Skinner ◽  
Katrine Ter-Borch Gram Schjoldager ◽  
Richard Beatson ◽  
...  

ABSTRACTAberrant mucin type O-linked glycosylation is a common occurrence in cancer. This type of O-linked glycosylation is not limited to mucins but can occur on many cell surface glycoproteins where only a small number of sites may be present. Upon EGF ligation, EGFR induces a signaling cascade but can also translocate to the nucleus where it can directly regulate gene transcription. Here we show that upon EGF binding, human breast cancer cells carrying different O-linked glycans respond by transcribing different gene expression signatures. This is not a result of changes in signal transduction but due to the differential nuclear translocation of EGFR in the two glyco-phenotypes. This is regulated by the formation of an EGFR/galectin-3/MUC1/β-catenin complex at the cell surface that is present in cells carrying short core-1-based O-glycans characteristic of tumour cells but absent in core-2-carrying cells.


2020 ◽  
Vol 21 (8) ◽  
pp. 2997 ◽  
Author(s):  
Kyu-Shik Lee ◽  
Min-Gu Lee ◽  
Yun-Suk Kwon ◽  
Kyung-Soo Nam

Several reports have described the anti-cancer activity of arctigenin, a lignan extracted from Arctium lappa L. Here, we investigated the effect of arctigenin (ATG) on doxorubicin (DOX)-induced cell death using MDA-MB-231 human breast cancer cells. The results showed that DOX-induced cell death was enhanced by ATG/DOX co-treatment in a concentration-dependent manner and that this was associated with increased DOX uptake and the suppression of multidrug resistance-associated protein 1 (MRP1) gene expression in MDA-MB-231 cells. ATG enhanced DOX-induced DNA damage and decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the expressions of RAD51 and survivin. Cell death caused by ATG/DOX co-treatment was mediated by the nuclear translocation of apoptosis inducing factor (AIF), reductions in cellular and mitochondrial Bcl-2 and Bcl-xL, and increases in mitochondrial BAX levels. However, caspase-3 and -7 did not participate in DOX/ATG-induced cell death. We also found that DOX/ATG-induced cell death was linked with activation of the p38 signaling pathway and suppressions of the phosphorylations and expressions of Akt and c-Jun N-terminal kinase. Taken together, these results show that ATG enhances the cytotoxic activity of DOX in MDA-MB-231 human breast cancer cells by inducing prolonged p21 expression and p38-mediated AIF-dependent cell death. In conclusion, our findings suggest that ATG might alleviate the side effects and improve the therapeutic efficacy of DOX.


Sign in / Sign up

Export Citation Format

Share Document