Co-existing neuropeptide FF and gonadotropin-releasing hormone 3 coordinately modulate male sexual behavior

Endocrinology ◽  
2021 ◽  
Author(s):  
Chie Umatani ◽  
Nagisa Yoshida ◽  
Eri Yamamoto ◽  
Yasuhisa Akazome ◽  
Yasutaka Mori ◽  
...  

Abstract Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were ‘delayed’, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF and GnRH3, coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.

2021 ◽  
Author(s):  
Chie Umatani ◽  
Nagisa Yoshida ◽  
Eri Yamamoto ◽  
Yasuhisa Akazome ◽  
Yasutaka Mori ◽  
...  

Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were 'delayed', not disrupted, in gnrh3-/- and npff-/- males, while the double knockout showed normal behaviors. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in the motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which balanced release of co-existing peptides is important for the neuromodulatory function of TN-GnRH neurons in the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to external environments.


2009 ◽  
Vol 297 (1) ◽  
pp. R135-R141 ◽  
Author(s):  
Siddharth Ramakrishnan ◽  
Nancy L. Wayne

There are multiple populations of gonadotropin-releasing hormone (GnRH) neurons in the brains of vertebrates. The population located in the hypothalamus/preoptic area is the best studied and is known to ultimately control reproduction. Teleost fish have an additional population of GnRH neurons in the terminal nerve (TN) associated with the olfactory bulbs, the physiological function of which is still unclear. Anatomical and physiological studies provide evidence that TN-GnRH neurons have extensive projections in the brain and modulate neuronal activity. Although there is anatomical evidence that the TN receives olfactory and optic sensory inputs, it is not known if sensory information is transmitted to TN-GnRH neurons to modulate their activity. In the present study, we tested the hypothesis that social cues from conspecifics modulate electrical activity of TN-GnRH neurons from the intact brain of female medaka fish ( Oryzias latipes). We further investigated the potential roles of chemosensory and visual signals in mediating the social cue response. We used a transgenic line of medaka with TN-GnRH neurons genetically tagged with green fluorescent protein, allowing visualization of specific neurons for whole-cell current clamp electrophysiology. We demonstrated that 24-h exposure to male visual and chemosensory cues suppressed the electrical activity of female TN-GnRH neurons compared with exposure to other females. Chemosensory cues alone were insufficient to induce this social cue response. However, visual cues alone replicated the “combined” social cue response. These findings support our hypothesis that sensory signals—and specifically, visual social cues—modulate electrical activity of TN-GnRH neurons.


2020 ◽  
Vol 21 (2) ◽  
pp. 529 ◽  
Author(s):  
Klaudia Barabás ◽  
Edina Szabó-Meleg ◽  
István M. Ábrahám

Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.


2020 ◽  
Vol 7 (8) ◽  
pp. 201040
Author(s):  
Jonathon Penix ◽  
R. Anthony DeFazio ◽  
Eden A. Dulka ◽  
Santiago Schnell ◽  
Suzanne M. Moenter

Gonadotropin-releasing hormone (GnRH) neurons form the final pathway for the central neuronal control of fertility. GnRH is released in pulses that vary in frequency in females, helping drive hormonal changes of the reproductive cycle. In the common fertility disorder polycystic ovary syndrome (PCOS), persistent high-frequency hormone release is associated with disrupted cycles. We investigated long- and short-term action potential patterns of GnRH neurons in brain slices before and after puberty in female control and prenatally androgenized (PNA) mice, which mimic aspects of PCOS. A Monte Carlo (MC) approach was used to randomize action potential interval order. Dataset distributions were analysed to assess (i) if organization persists in GnRH neuron activity in vitro , and (ii) to determine if any organization changes with development and/or PNA treatment. GnRH neurons in adult control, but not PNA, mice produce long-term patterns different from MC distributions. Short-term patterns differ from MC distributions before puberty but become absorbed into the distributions with maturation, and the distributions narrow. These maturational changes are blunted by PNA treatment. Firing patterns of GnRH neurons in brain slices thus maintain organization dictated at least in part by the biologic status of the source and are disrupted in models of disease.


Sign in / Sign up

Export Citation Format

Share Document