scholarly journals Increased Mortality in Patients With Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency

2014 ◽  
Vol 99 (12) ◽  
pp. E2715-E2721 ◽  
Author(s):  
Henrik Falhammar ◽  
Louise Frisén ◽  
Christina Norrby ◽  
Angelica Lindén Hirschberg ◽  
Catarina Almqvist ◽  
...  

Context: Reports on mortality in patients with congenital adrenal hyperplasia (CAH) are lacking. Objective: This study sought to study mortality and causes of death in CAH. Design, Setting, and Participants: We studied patients with CAH (21-hydroxylase deficiency, n = 588; CYP21A2 mutations known, >80%), and compared them with controls (n = 58 800). Data were derived through linkage of national population-based registers. Main Outcome Measures: Mortality and causes of death. Results: Mean age of death was 41.2 ± 26.9 years in patients with CAH and 47.7 ± 27.7 years in controls (P < .001). Among patients with CAH, 23 (3.9%) had deceased compared with 942 (1.6%) of controls. The hazard ratio (and 95% confidence interval) of death was 2.3 (1.2–4.3) in CAH males and 3.5 (2.0–6.0) in CAH females. Including only patients born 1952–2009, gave similar total results but only patients with salt wasting (SW) or with unclear phenotype had an increased mortality. The causes of death in patients with CAH were adrenal crisis (42%), cardiovascular (32%), cancer (16%), and suicide (10%). There were seven additional deaths in CAH individuals with incomplete or reused personal identification number that could not be analyzed using linkage of registers. Of the latter, all except one were deceased before the introduction of neonatal screening in 1986, and most of them in the first weeks of life, probably in an adrenal crisis. Conclusions: CAH is a potentially lethal condition and was associated with excess mortality due to adrenal crisis. The SW phenotype also seemed to have worse outcome in children and adults due to adrenal crisis and not only before the introduction of neonatal screening.

2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Heves Kırmızıbekmez ◽  
Rahime Gül Yesiltepe Mutlu ◽  
Serdar Moralıoğlu ◽  
Ahmet Tellioğlu ◽  
Ayşenur Cerrah Celayir

Congenital adrenal hyperplasia (CAH) is a group of inherited defects of cortisol biosynthesis. A case of classical CAH due to 21-hydroxylase deficiency (21-OHD) with early onset of salt waste and concurrence of meningomyelocele (MMC) was presented here. The management of salt-wasting crisis which is complicated by a postrenal dysfunction due to neurogenic bladder was described. Possible reasons of growth retardation in the one-year follow-up period were discussed. A significant regression of the phallus with proper medical treatment was also mentioned.


Author(s):  
Maria Laura Iezzi ◽  
Gaia Varriale ◽  
Luca Zagaroli ◽  
Stefania Lasorella ◽  
Marco Greco ◽  
...  

AbstractCongenital adrenal hyperplasia (CAH) due to steroid 21-hydroxylase deficiency represents a group of autosomal recessive disorders characterized by impaired cortisol production due to altered upstream steroid conversions, subclassified as classic and nonclassic forms. The genotype–phenotype correlation is possible in the most frequent case but not in all. Despite in literature many mutations are known, there is the possibility of finding a new genetic pattern in patients with CAH.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Tania Mayvel Espinosa Reyes ◽  
Teresa Collazo Mesa ◽  
Paulina Arasely Lantigua Cruz ◽  
Adriana Agramonte Machado ◽  
Emma Domínguez Alonso ◽  
...  

Abstract Background Congenital adrenal hyperplasia (CAH) is an autosomal recessive group of diseases. 21-Hydroxylase deficiency (21OHD) accounts for between 95 and 99% of all CAH cases. Objectives To characterize the genotype of patients clinically diagnosed with 21OHD and to identify the most frequent mutations in the Cuban population. Methods Cross-sectional descriptive study that included all patients diagnosed with 21OHD from January 2000 to December 2018. For the molecular analysis of the CYP21A2 gene, a protocol was used that used the polymerase chain reaction in 2 stages; in the first stage genomic DNA was amplified and 5 point mutations were detected in the second stage (Intron 2, Deletion of 8 bp, G318X, I172N and P30L). Results The 5 point mutations were identified in 31 of the 55 (56%) studied patients, 16/21 (76%) in the salt-wasting, 12/18 (67%) in the simple virilizing and 3/16 (19%) in the nonclassical form. The Intron 2 mutation was the most frequent, followed by G318X and 8 bp deletion. Compound heterozygotes were found in 10 patients, all corresponded to classic forms of the disease. Conclusions The causal CYP21A2 gene mutation was detected in 56% (72% in classic CAH), which makes the method encouraging. The most frequent mutations observed were Intron 2 and G318X. The detection of mutations offers confirmation of diagnosis, prediction of phenotype and genetic counseling.


Author(s):  
Pia Burman ◽  
Henrik Falhammar ◽  
Erik Waldenström ◽  
Anders Sundin ◽  
Ulrika Bitzén

Abstract Context Women with congenital adrenal hyperplasia (CAH) may present with androgen excess that is difficult to control with conventional suppressive doses of glucocorticoids. Clinical management is challenging, and the woman is at great risk of developing steroid-induced complications. Patients and Methods A 32-year-old woman with salt-wasting CAH due to 21-hydroxylase deficiency underwent right-sided adrenalectomy because of a large myelolipoma. Over the years, androgens became increasingly difficult to suppress on prednisolone 5 + 0 + 2.5 mg daily, and at age 39 years the left adrenal with an enlarging myelolipoma was removed. A month later serum testosterone levels had increased from 4.1 preoperatively to 18.3 nmol/L (reference 0.2-1.8 nmol/L), and adrenocorticotropin levels from 32 to 283 pmol/L (reference < 14 pmol/L). No adrenal parenchyma was visualized on computed tomography (CT). In the further search for the source of the markedly elevated testosterone, positron emission tomography (PET) was performed with 2 different tracers, 18fluorodeoxyglucose (18FDG) reflecting glucose metabolism and 11C-metomidate, an inhibitor of 11-β-hydroxylase targeting adrenocortical tissue. Results 18FDG-PET/CT with cosyntropin stimulation showed ovarian/paraovarian hypermetabolism, suggestive of adrenal rest tumors. Further characterization with 11C-metomidate PET/CT showed uptakes localized to the ovaries/adnexa, behind the spleen, and between the right crus diaphragmaticus and inferior vena cava. Conclusion Adrenal rest tumors can give rise to high androgen levels in spite of suppressive supraphysiological glucocorticoid doses. This case illustrates, for the first time, the value of 11C-metomidate PET as a sensitive method in documenting adrenal rest tumors, currently considered rare in women with CAH.


2000 ◽  
Vol 21 (3) ◽  
pp. 245-291 ◽  
Author(s):  
Perrin C. White ◽  
Phyllis W. Speiser

Abstract More than 90% of cases of congenital adrenal hyperplasia (CAH, the inherited inability to synthesize cortisol) are caused by 21-hydroxylase deficiency. Females with severe, classic 21-hydroxylase deficiency are exposed to excess androgens prenatally and are born with virilized external genitalia. Most patients cannot synthesize sufficient aldosterone to maintain sodium balance and may develop potentially fatal “salt wasting” crises if not treated. The disease is caused by mutations in the CYP21 gene encoding the steroid 21-hydroxylase enzyme. More than 90% of these mutations result from intergenic recombinations between CYP21 and the closely linked CYP21P pseudogene. Approximately 20% are gene deletions due to unequal crossing over during meiosis, whereas the remainder are gene conversions—transfers to CYP21 of deleterious mutations normally present in CYP21P. The degree to which each mutation compromises enzymatic activity is strongly correlated with the clinical severity of the disease in patients carrying it. Prenatal diagnosis by direct mutation detection permits prenatal treatment of affected females to minimize genital virilization. Neonatal screening by hormonal methods identifies affected children before salt wasting crises develop, reducing mortality from this condition. Glucocorticoid and mineralocorticoid replacement are the mainstays of treatment, but more rational dosing and additional therapies are being developed.


PEDIATRICS ◽  
1998 ◽  
Vol 101 (4) ◽  
pp. e11-e11 ◽  
Author(s):  
Astrid Thilén ◽  
Anna Nordenström ◽  
Lars Hagenfeldt ◽  
Ulrika von Döbeln ◽  
Claes Guthenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document