Stimulation of intracellular calcium concentration by adenosine triphosphate and uridine 5'-triphosphate in human term placental cells: evidence for purinergic receptors

1995 ◽  
Vol 80 (6) ◽  
pp. 1809-1815 ◽  
Author(s):  
A. Petit
2006 ◽  
Vol 290 (6) ◽  
pp. H2498-H2508 ◽  
Author(s):  
D. Hong ◽  
D. Jaron ◽  
D. G. Buerk ◽  
K. A. Barbee

We investigated changes in calcium concentration in cultured bovine aortic endothelial cells (BAECs) and rat adrenomedulary endothelial cells (RAMECs, microvascular) in response to different levels of shear stress. In BAECs, the onset of shear stress elicited a transient increase in intracellular calcium concentration that was spatially uniform, synchronous, and dose dependent. In contrast, the response of RAMECs was heterogeneous in time and space. Shear stress induced calcium waves that originated from one or several cells and propagated to neighboring cells. The number and size of the responding groups of cells did not depend on the magnitude of shear stress or the magnitude of the calcium change in the responding cells. The initiation and the propagation of calcium waves in RAMECs were significantly suppressed under conditions in which either purinergic receptors were blocked by suramin or extracellular ATP was degraded by apyrase. Exogenously applied ATP produced similarly heterogeneous responses. The number of responding cells was dependent on ATP concentration, but the magnitude of the calcium change was not. Our data suggest that shear stress stimulates RAMECs to release ATP, causing the increase in intracellular calcium concentration via purinergic receptors in cells that are heterogeneously sensitive to ATP. The propagation of the calcium signal is also mediated by ATP, and the spatial pattern suggests a locally elevated ATP concentration in the vicinity of the initially responding cells.


2001 ◽  
Vol 280 (3) ◽  
pp. H1088-H1096 ◽  
Author(s):  
Alexander Schuster ◽  
Hirotaka Oishi ◽  
Jean-Louis Bény ◽  
Nikolaos Stergiopulos ◽  
Jean-Jacques Meister

The goal of the present study was to analyze the intercellular calcium communication between smooth muscle cells (SMCs) and endothelial cells (ECs) by simultaneously monitoring artery diameter and intracellular calcium concentration in a rat mesenteric arterial segment in vitro under physiological pressure (50 mmHg) and flow (50 μl/min) in a specially developed system. Intracellular calcium was expressed as the fura 2 ratio. The diameter was measured using a digital image acquisition system. Stimulation of SMCs with the α1-agonist phenylephrine (PE) caused not only an increase in the free intracellular calcium concentration of the SMCs as expected but also in the ECs, suggesting a calcium flux from the SMCs to the ECs. The gap junction uncoupler palmitoleic acid greatly reduced this increase in calcium in the ECs on stimulation of the SMCs with PE. This indicates that the signaling pathway passes through the gap junctions. Similarly, although vasomotion originates in the SMCs, calcium oscillates in both SMCs and ECs during vasomotion, suggesting again a calcium flux from the SMCs to the ECs.


2002 ◽  
Vol 58 (2) ◽  
pp. 203-205 ◽  
Author(s):  
András Palotás ◽  
János Kálmán ◽  
Miklós Palotás ◽  
Anna Juhász ◽  
Zoltán Janka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document