scholarly journals SUN-736 Knockout of Membrane Androgen Receptor ZIP9 Results in Reduced Female Fecundity and Abnormal Egg Activation in Zebrafish

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Aubrey Converse ◽  
Peter Thomas

Abstract Recently, our research group cloned and characterized a putative membrane androgen receptor from teleost ovarian tissue that was found to be homologous with the zinc transporter protein ZIP9 (Slc39a9). To date, ZIP9 is the only zinc transporter that is known to be ligand activated or possess steroid receptor activity. Since the discovery of its androgen receptor activity, ZIP9 has been found to mediate androgen actions in a variety of tissues including teleost ovarian follicle cells, human cancer cell lines, and murine Sertoli cells. However, ZIP9 has not been examined in an in vivo model so the precise physiological functions of this receptor remain unclear. A ZIP9-mutant strain of zebrafish was developed using a CRISPR-Cas9 system in order to examine the role of the protein in teleost reproduction. While ZIP9-mutant males had similar breeding occurrence and fertilization rates to wild-type fish, mutant females exhibited severe reductions in fecundity compared to wild-type fish. ZIP9-mutant females spawn significantly fewer eggs of which a high proportion failed to undergo chorion elevation, a characteristic of normal egg activation. Eggs that showed this failed chorion elevation phenotype had significantly lower fertilization rates and produced larvae that exhibit a high incidence of pericardial/yolk sac edema and reduced growth compared to larvae hatched from wild-type eggs. However, no differences were observed in the proportions of oocytes at later stages of development between ZIP9-mutant and wild-type fish, suggesting the observed phenotypes are not related to abnormal oogenesis. We observed that mature wild-type eggs have numerous cortically located vesicles that are autofluorescent under ultraviolet light and decrease in number when the eggs undergo activation, suggesting they undergo exocytosis during the cortical reaction. While zinc is known to be stored in vesicles that undergo exocytosis in mammalian eggs, the role of zinc in teleost egg activation is currently unknown. In eggs from wild-type fish, we observed an increase in extracellular zinc levels upon egg activation and treatment with a zinc ionophore (zinc pyrithione) significantly reduced the number of eggs that undergo normal chorion elevation when activated. This suggests a role for zinc in zebrafish egg activation similar to that observed in mammals. Of interest, ZIP9-mutant eggs that did not undergo chorion elevation had significantly smaller vesicles than those found in wild-type fish eggs. This abnormal vesicle morphology and failure to undergo chorion elevation suggest a role of ZIP9 in egg activation. Additional insight into the role of zinc in zebrafish egg activation and the mechanism by which ZIP9 disruption leads to abnormal cortical vesicles and egg activation will help determine if ZIP9 plays a role in zinc transport and flux in zebrafish eggs during activation.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aubrey Converse ◽  
Peter Thomas

Abstract The zinc transporter ZIP9 (SLC39A9) was recently characterized as a membrane androgen receptor in various teleost and mammalian cell models. ZIP9 shows the highest expression in ovaries of teleosts, a tissue in which both androgen signaling and zinc dynamics have significant roles. To examine the role of ZIP9 in ovarian physiology, we generated a ZIP9-mutant zebrafish strain using a CRISPR/Cas9 system. zip9-/- females showed significant reductions in fecundity, embryo viability, and growth of their offspring compared to wildtype (WT) fish. Furthermore, a high proportion of zip9-/- eggs failed to undergo normal chorion elevation during activation. In WT eggs, zinc was detected in cortically-localized vesicles which underwent exocytosis upon activation. zip9-/- eggs showed abnormal cortical vesicle development and had a significantly depressed activation-induced zinc release compared to WT eggs. Moreover, pharmacologically sustained elevation of zinc in WT eggs prior to activation resulted in abnormal chorion elevation similar to that observed in zip9-/- eggs. These results indicate that ZIP9 is essential for proper zinc modulation during zebrafish egg activation and presents the first evidence of zinc modulation during egg activation in a non-mammalian species.


Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4237-4249 ◽  
Author(s):  
A. Håkan Berg ◽  
Charles D. Rice ◽  
Md. Saydur Rahman ◽  
Jing Dong ◽  
Peter Thomas

Abstract Rapid, cell surface-initiated, pregenomic androgen actions have been described in various vertebrate cells, but the receptors mediating these actions remain unidentified. We report here the cloning and expression of a cDNA from Atlantic croaker (Micropogonias undulatus) ovaries encoding a 33-kDa, seven-transmembrane protein with binding and signaling characteristics of a membrane androgen receptor that is unrelated to any previously described steroid receptor. Instead, croaker membrane androgen receptor has 81–93% amino acid sequence identity with zinc transporter ZIP9 (SLC39A9) subfamily members, indicating it is a ZIP9 protein. Croaker ZIP9 is expressed in gonadal tissues and in brain and is up-regulated in the ovary by reproductive hormones. Croaker ZIP9 protein is localized to plasma membranes of croaker granulosa cells and human breast cancer (SKBR-3) cells stably transfected with ZIP9. Recombinant croaker ZIP9 has a high affinity (dissociation constant, Kd, 12.7 nM), limited capacity (maximal binding capacity 2.8 nM/mg protein), displaceable, single binding site-specific for androgens, characteristic of steroid receptors. Testosterone activates a stimulatory G protein coupled to ZIP9, resulting in increased cAMP production. Testosterone promotes serum starvation-induced cell death and apoptosis in transfected cells and in croaker ovarian follicle cells that is associated with rapid increases in intracellular free zinc concentrations, suggesting an involvement of zinc in this nonclassical androgen action to promote apoptosis. These responses to testosterone are abrogated by treatment with ZIP9 small interfering RNA. The results provide the first evidence that zinc transporter proteins can function as specific steroid membrane receptors and indicate a previously unrecognized signaling pathway mediated by steroid receptors involving alterations in intracellular zinc.


2016 ◽  
Vol 113 (8) ◽  
pp. 2294-2299 ◽  
Author(s):  
Fernando F. Migone ◽  
Robert G. Cowan ◽  
Rebecca M. Williams ◽  
Kiersten J. Gorse ◽  
Warren R. Zipfel ◽  
...  

Rupture of the ovarian follicle releases the oocyte at ovulation, a timed event that is critical for fertilization. It is not understood how the protease activity required for rupture is directed with precise timing and localization to the outer surface, or apex, of the follicle. We hypothesized that vasoconstriction at the apex is essential for rupture. The diameter and blood flow of individual vessels and the thickness of the apical follicle wall were examined over time to expected ovulation using intravital multiphoton microscopy. Vasoconstriction of apical vessels occurred within hours preceding follicle rupture in wild-type mice, but vasoconstriction and rupture were absent inAmhr2cre/+SmoM2mice in which follicle vessels lack the normal association with vascular smooth muscle. Vasoconstriction is not simply a response to reduced thickness of the follicle wall; vasoconstriction persisted in wild-type mice when thinning of the follicle wall was prevented by infusion of protease inhibitors into the ovarian bursa. Ovulation was inhibited by preventing the periovulatory rise in the expression of the vasoconstrictor endothelin 2 by follicle cells of wild-type mice. In these mice, infusion of vasoconstrictors (either endothelin 2 or angiotensin 2) into the bursa restored the vasoconstriction of apical vessels and ovulation. Additionally, infusion of endothelin receptor antagonists into the bursa of wild-type mice prevented vasoconstriction and follicle rupture. Processing tissue to allow imaging at increased depth through the follicle and transabdominal ultrasonography in vivo showed that decreased blood flow is restricted to the apex. These results demonstrate that vasoconstriction at the apex of the follicle is essential for ovulation.


1984 ◽  
Vol 79 (2) ◽  
pp. 133-144 ◽  
Author(s):  
K. J. Eckelbarger ◽  
P. A. Linley ◽  
J. P. Grassle

Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5428-5437 ◽  
Author(s):  
Johan Bourghardt ◽  
Anna S. K. Wilhelmson ◽  
Camilla Alexanderson ◽  
Karel De Gendt ◽  
Guido Verhoeven ◽  
...  

The atheroprotective effect of testosterone is thought to require aromatization of testosterone to estradiol, but no study has adequately addressed the role of the androgen receptor (AR), the major pathway for the physiological effects of testosterone. We used AR knockout (ARKO) mice on apolipoprotein E-deficient background to study the role of the AR in testosterone atheroprotection in male mice. Because ARKO mice are testosterone deficient, we sham operated or orchiectomized (Orx) the mice before puberty, and Orx mice were supplemented with placebo or a physiological testosterone dose. From 8 to 16 wk of age, the mice consumed a high-fat diet. In the aortic root, ARKO mice showed increased atherosclerotic lesion area (+80%, P < 0.05). Compared with placebo, testosterone reduced lesion area both in Orx wild-type (WT) mice (by 50%, P < 0.001) and ARKO mice (by 24%, P < 0.05). However, lesion area was larger in testosterone-supplemented ARKO compared with testosterone-supplemented WT mice (+57%, P < 0.05). In WT mice, testosterone reduced the presence of a necrotic core in the plaque (80% among placebo-treated vs. 12% among testosterone-treated mice; P < 0.05), whereas there was no significant effect in ARKO mice (P = 0.20). In conclusion, ARKO mice on apolipoprotein E-deficient background display accelerated atherosclerosis. Testosterone treatment reduced atherosclerosis in both WT and ARKO mice. However, the effect on lesion area and complexity was more pronounced in WT than in ARKO mice, and lesion area was larger in ARKO mice even after testosterone supplementation. These results are consistent with an AR-dependent as well as an AR-independent component of testosterone atheroprotection in male mice.


Author(s):  
Sifang Liao ◽  
Dick R. Nässel

AbstractIn Drosophila eight insulin-like peptides (DILP1-8) are encoded on separate genes. These DILPs are characterized by unique spatial and temporal expression patterns during the lifecycle. Whereas functions of several of the DILPs have been extensively investigated at different developmental stages, the role of DILP8 signaling is primarily known from larvae and pupae where it couples organ growth and developmental transitions. In adult female flies, a study showed that a specific set of neurons that express the DILP8 receptor, Lgr3, is involved in regulation of reproductive behavior. Here, we further investigated the expression of dilp8/DILP8 and Lgr3 in adult female flies and the functional role of DILP8 signaling. The only site where we found both dilp8 expression and DILP8 immunolabeling was in follicle cells of mature ovaries. Lgr3 expression was detected in numerous neurons in the brain and ventral nerve cord, a small set of peripheral neurons innervating the abdominal heart, as well as in a set of follicle cells close to the oviduct. Ovulation was affected in dilp8 mutants as well as after dilp8-RNAi using dilp8 and follicle cell Gal4 drivers. More eggs were retained in the ovaries and fewer were laid, indicating that DILP8 is important for ovulation. Our data suggest that DILP8 signals locally to Lgr3 expressing follicle cells as well as systemically to Lgr3 expressing efferent neurons in abdominal ganglia that innervate oviduct muscle. Thus, DILP8 may act at two targets to regulate ovulation: follicle cell rupture and oviduct contractions. Furthermore, we could show that manipulations of dilp8 expression affect food intake and starvation resistance. Possibly this reflects a feedback signaling between ovaries and the CNS that ensures nutrients for ovary development. In summary, it seems that DILP8 signaling in regulation of reproduction is an ancient function, conserved in relaxin signaling in mammals.


Author(s):  
David J. DeGraff ◽  
Xiuping Yu ◽  
Qian Sun ◽  
Janni Mirosevich ◽  
Ren Jie Jin ◽  
...  

Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4250-4265 ◽  
Author(s):  
Peter Thomas ◽  
Yefei Pang ◽  
Jing Dong ◽  
A. Håkan Berg

Abstract Recently, we discovered a cDNA in teleost ovarian follicle cells belonging to the zinc transporter ZIP9 subfamily (SLC39A9) encoding a protein with characteristics of a membrane androgen receptor (mAR). Here, we demonstrate that human ZIP9 expressed in MDA-MB-468 breast cancer cells and stably overexpressed in human prostate cancer PC-3 cells (PC-3-ZIP9) also displays the ligand binding and signaling characteristics of a specific, high-affinity mAR. Testosterone treatment of MDA-MB-468 and PC-3-ZIP9 cells caused activation of G proteins and second messenger pathways as well as increases in intracellular free zinc concentrations that were accompanied by induction of apoptosis. [1,2,6,7-3H]-testosterone binding and these responses were abrogated in MDA-MB-468 cells after ZIP9 small interfering RNA (siRNA) treatment and absent in PC-3 cells transfected with empty vector, confirming that ZIP9 functions as an mAR. Testosterone treatment caused up-regulation of proapoptotic genes Bax (Bcl-2-associated X protein), p53 (tumor protein p53), and JNK (c-Jun N-terminal kinases) in both cell lines and increased expression of Bax, Caspase 3, and cytochrome C proteins. Treatment with a zinc chelator or a MAPK inhibitor blocked testosterone-induced increases in Bax, p53, and JNK mRNA expression. The results suggest that both androgen signaling and zinc transporter functions of ZIP9 mediate testosterone promotion of apoptosis. ZIP9 is widely expressed in human tissues and up-regulated in malignant breast and prostate tissues, suggesting that it is a potential therapeutic target for treating breast and prostate cancers. These results provide the first evidence for a mechanism mediated by a single protein through which steroid and zinc signaling pathways interact to regulate physiological functions in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document