scholarly journals Nuclear ErbB-2-Induced Transcriptome Drives Triple Negative Breast Cancer Growth

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1028-A1029
Author(s):  
Maria F Chervo ◽  
Micaela Parra ◽  
Nicolas Bellora ◽  
Ezequiel Petrillo ◽  
Santiago Madera ◽  
...  

Abstract Triple negative breast cancer (TNBC) refers to tumors that do not express clinically significant levels of estrogen and progesterone receptors, and lack membrane overexpression or gene amplification of ErbB-2 tyrosine kinase receptor. Transcriptome and proteome heterogeneity of TNBC poses a major challenge to precision medicine. Gene expression analyses have categorized TNBC into distinct molecular subtypes. Up to 78% of clinical TNBCs belong to the basal-like (BL) subtype. Here we found ErbB-2 in an unanticipated scenario: the nucleus of TNBC (NErbB-2). Our study on ErbB-2 alternative splicing, using a PCR-sequencing approach combined with RNA interference, revealed that BL TNBC cells express the canonical ErbB-2 (WTErbB-2), encoded by transcript 1, and the non-canonical isoform c, encoded by alternative transcript 3 (T3). The latter was not previously reported in normal or malignant cells. To characterize the isoform c we designed siRNAs targeting T3 (T3 siRNAs), which silenced up to 93% of said isoform. Transfection of T3 siRNAs into BL cells expressing only isoform c or both isoform c and WTErbB-2 was sufficient to decrease cell proliferation. Intratumoral injections of T3 siRNAs into mice bearing BL TN tumors also blocked in vivo growth. To explore whether isoform c growth-promoting effect is due to its functions as a transcriptional regulator, we performed RNA-seq in BL cells expressing only this isoform. We identified a set of genes differentially regulated in BL cells where we evicted isoform c from the nucleus, as compared to control cells. In the up-regulated group, we found enrichment of pro-apoptotic and tumor suppressor genes and in the down-regulated one, genes involved in proliferation and stemness. We used gene set enrichment analysis (GSEA) to identify the biological processes associated with these isoform c-regulated genes. We found a pronounced enrichment of gene sets related to apoptosis, activation of DNA damage pathways and cell cycle arrest in response to eviction of nuclear isoform c. GSEA also revealed negative regulation of gene sets involved in cell motility, cellular differentiation and growth pathways in BL cells lacking nuclear isoform c expression. These results suggest that NErbB-2 function modulates tumor growth and promotes a metastatic phenotype in TNBC. Furthermore, our clinical findings identified NErbB-2 as an independent predictor of shorter OS (HR 2.54; 95% CI 1.22-5.28; P = 0.013), DFS (HR 2.91; 95% CI 1.44-5.87; P = 0.003), and DMFS (HR 2.59; 95% CI 1.20-5.60; P = 0.015) in 99 TN primary tumors. Our discoveries challenge the present scenario of drug development for personalized BC medicine that focuses on wild-type proteins, which conserve the canonical domains and are located in their classical cellular compartments, highlighting the potential of NErbB-2 isoforms as novel therapeutic targets and clinical biomarkers in TNBC.

2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of DnaJ (Hsp40) homolog, subfamily C, member 28, encoded by DNAJC28 when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, DNAJC28 expression was correlated with overall survival in patients with breast cancer. DNAJC28 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

Women diagnosed with triple negative breast cancer can benefit neither from endocrine therapy nor from HER2-targeted therapies (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding cyclin A2, CCNA2, when comparing the tumor cells of patients with triple negative breast cancer to normal mammary ductal cells (2). CCNA2 was also differentially expressed in bulk tumor in human breast cancer (3). CCNA2 mRNA was present at significantly increased quantities in TNBC tumor cells relative to normal mammary ductal cells. Analysis of human survival data revealed that expression of CCNA2 in primary tumors of the breast was correlated with overall survival in patients with basal-like type cancer, while within triple negative breast cancer, primary tumor expression of CCNA2 was correlated with overall survival in patients with basal-like 1, basal-like 2, and mesenchymal subtype disease. CCNA2 may be of relevance to initiation, maintenance or progression of triple negative breast cancers.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of vacuolar protein sorting 52, encoded by VPS52 when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, VPS52 expression was correlated with recurrence-free survival in basal subtype breast cancer, a molecular subtype sharing significant overlap with triple negative breast cancer. VPS52 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of mitogen-activated protein kinase kinase kinase kinase 2, encoded by MAP4K2 when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, MAP4K2 expression was correlated with distant metastasis-free survival in basal subtype breast cancer, a molecular subtype sharing significant overlap with triple negative breast cancer. MAP4K2 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of paired box 5, encoded by PAX5 when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, PAX5 expression was significantly correlated with overall survival in basal subtype breast cancer, a molecular subtype sharing significant overlap with triple negative breast cancer. PAX5 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of BTB and CNC homology 1, basic leucine zipper transcription factor 2, encoded by BACH2 when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, BACH2 expression was correlated with overall survival in patients with breast cancer. BACH2 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival at time of analysis: dead or alive. The inflammasome component and guanylate-binding protein GBP5 emerged as among the most significant differences, transcriptome-wide, when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, GBP5 expression was significantly correlated with overall survival in basal subtype breast cancer, a molecular subtype sharing significant overlap with triple negative breast cancer. GBP5 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of programmed cell death 1 ligand 2, encoded by PDCD1LG2, also known as PD-L2, when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, PD-L2 expression was significantly correlated with overall survival in basal subtype breast cancer, a molecular subtype sharing significant overlap with triple negative breast cancer. PD-L2 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of hairy and enhancer of split 1, encoded by HES1 when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, HES1 expression was significantly correlated with overall survival in basal subtype breast cancer, a molecular subtype sharing significant overlap with triple negative breast cancer. HES1 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of T-cell activation RhoGTPase activating protein, encoded by TAGAP when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, TAGAP expression was correlated with overall survival in basal subtype breast cancer, a molecular subtype sharing significant overlap with triple negative breast cancer. TAGAP may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


Sign in / Sign up

Export Citation Format

Share Document