scholarly journals Peroxisome Proliferator-Activated Receptor α Physically Interacts with CCAAT/Enhancer Binding Protein (C/EBPβ) to Inhibit C/EBPβ-Responsive α1-Acid Glycoprotein Gene Expression

2005 ◽  
Vol 19 (5) ◽  
pp. 1135-1146 ◽  
Author(s):  
Audrey Mouthiers ◽  
Anita Baillet ◽  
Claudine Deloménie ◽  
Dominique Porquet ◽  
Najet Mejdoubi-Charef
Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1764
Author(s):  
Dahae Lee ◽  
Hee Jae Kwak ◽  
Byoung Ha Kim ◽  
Seung Hyun Kim ◽  
Dong-Wook Kim ◽  
...  

Hispidulin is abundant in Arrabidaea chica, Crossostephium chinense, and Grindelia argentina, among others. p-Synephrine is the main phytochemical constituent of Citrus aurantium. It has been used in combination with various other phytochemicals to determine synergistic effects in studies involving human participants. However, there have been no reports comparing the anti-adipogenic effects of the combination of hispidulin and p-synephrine. The current study explores the anti-adipogenic effects of hispidulin alone and in combination with p-synephrine in a murine preadipocyte cell line, 3T3-L1. Co-treatment resulted in a greater inhibition of the formation of red-labeled lipid droplets than the hispidulin or p-synephrine-alone treatments. Co-treatment with hispidulin and p-synephrine also significantly inhibited adipogenic marker proteins, including Akt, mitogen-activated protein kinases, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, glucocorticoid receptor, and CCAAT/enhancer-binding protein β. Although further studies are required to assess the effects of each drug on pharmacokinetic parameters, a combination treatment with hispidulin and p-synephrine may be a potential alternative strategy for developing novel anti-obesity drugs.


1992 ◽  
Vol 12 (6) ◽  
pp. 2553-2560
Author(s):  
D Mischoulon ◽  
B Rana ◽  
N L Bucher ◽  
S R Farmer

As an approach to understanding physiological mechanisms that control the proliferation of highly differentiated cells, we are addressing whether certain hepatic transcription factors participate in mechanisms that control the growth of hepatocytes. We have focused on CCAAT enhancer-binding protein (C/EBP alpha), a transcription factor which is highly abundant in normal liver and is considered to regulate expression of many genes, including some involved in energy metabolism (S. L. McKnight, M. D. Lane, and S. Gluecksohn-Walsh. Genes Dev. 3:2021-2024, 1989). Using Northern (RNA) blot analysis, we have examined the expression of C/EBP alpha mRNA during liver regeneration and in primary cultures of hepatocytes. C/EBP alpha mRNA levels decrease 60 to 80% within 1 to 3 h after partial hepatectomy as the cells move from G0 to G1 and decrease further when cells progress into S phase. Run-on transcription analysis is in agreement with the Northern blot data, thus suggesting that C/EBP alpha is transcriptionally regulated in regenerating liver. C/EBP alpha mRNA expression also decreases dramatically during the growth of freshly isolated normal hepatocytes cultured under conventional conditions (on dried rat tail collagen; stimulated to proliferate by epidermal growth factor [EGF] and insulin). Cultures of hepatocytes on rat tail collagen in the presence or absence of EGF clearly show that within 3 h, EGF depresses C/EBP alpha mRNA expression and that this effect is substantially greater by 4 h. Inhibition of protein synthesis in the liver by cycloheximide or in cultured hepatocytes by puromycin or cycloheximide effectively blocks the down-regulation of C/EBP alpha gene expression, apparently by stabilizing the normal rapid turnover of the C/EBP alpha mRNA (half-life of <2 h). This drop in C/EBP alpha gene expression in response to activation of hepatocyte growth is consistent with the proposal that C/EBP alpha has an antiproliferative role to play in highly differentiated cells (R. M. Umek, A. D. Friedman, and S. L. McKnight, Science 251: 288-292, 1991).


Sign in / Sign up

Export Citation Format

Share Document