scholarly journals Thyroid Hormone-Regulated Target Genes Have Distinct Patterns of Coactivator Recruitment and Histone Acetylation

2006 ◽  
Vol 20 (3) ◽  
pp. 483-490 ◽  
Author(s):  
Ying Liu ◽  
Xianmin Xia ◽  
Joseph D. Fondell ◽  
Paul M. Yen

Abstract Thyroid hormone receptors (TRs) are ligand-regulated transcription factors that bind to thyroid hormone response elements of target genes. Upon ligand binding, they recruit coactivator complexes that increase histone acetylation and recruit RNA polymerase II (Pol II) to activate transcription. Recent studies suggest that nuclear receptors and coactivators may have temporal recruitment patterns on hormone response elements, yet little is known about the nature of the patterns at multiple endogenous target genes. We thus performed chromatin immunoprecipitation assays to investigate coactivator recruitment and histone acetylation patterns on the thyroid hormone response elements of four endogenous target genes (GH, sarcoplasmic endoplasmic reticulum calcium-adenosine triphosphatase, phosphoenolpyruvate carboxykinase, and cholesterol 7α-hydroxylase) in a rat pituitary cell line that expresses TRs. We found that TRβ, several associated coactivators (steroid receptor coactivator-1, glucocorticoid receptor interacting protein-1, and TR-associated protein 220), and RNA Pol II were rapidly recruited to thyroid hormone response elements as early as 15 min after T3 addition. When the four target genes were compared, we observed differences in the types and temporal patterns of recruited coactivators and histone acetylation. Interestingly, the temporal pattern of RNA Pol II was similar for three genes studied. Our findings suggest that thyroid hormone-regulated target genes may have distinct patterns of coactivator recruitment and histone acetylation that may enable highly specific regulation.

2013 ◽  
Vol 33 (2) ◽  
Author(s):  
Susi Dudazy-Gralla ◽  
Kristina Nordström ◽  
Peter Josef Hofmann ◽  
Dina Abdul Meseh ◽  
Lutz Schomburg ◽  
...  

TRα1 (thyroid hormone receptor α1) is well recognized for its importance in brain development. However, due to the difficulties in predicting TREs (thyroid hormone response elements) in silico and the lack of suitable antibodies against TRα1 for ChIP (chromatin immunoprecipitation), only a few direct TRα1 target genes have been identified in the brain. Here we demonstrate that mice expressing a TRα1–GFP (green fluorescent protein) fusion protein from the endogenous TRα locus provide a valuable animal model to identify TRα1 target genes. To this end, we analysed DNA–TRα1 interactions in vivo using ChIP with an anti-GFP antibody. We validated our system using established TREs from neurogranin and hairless, and by verifying additional TREs from known TRα1 target genes in brain and heart. Moreover, our model system enabled the identification of novel TRα1 target genes such as RNF166 (ring finger protein 166). Our results demonstrate that transgenic mice expressing a tagged nuclear receptor constitute a feasible approach to study receptor–DNA interactions in vivo, circumventing the need for specific antibodies. Models like the TRα1–GFP mice may thus pave the way for genome-wide mapping of nuclear receptor-binding sites, and advance the identification of novel target genes in vivo.


2006 ◽  
Vol 339 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Kuniko Horie-Inoue ◽  
Kenichi Takayama ◽  
Hidemasa U. Bono ◽  
Yasuyoshi Ouchi ◽  
Yasushi Okazaki ◽  
...  

Endocrinology ◽  
2005 ◽  
Vol 146 (11) ◽  
pp. 4926-4933 ◽  
Author(s):  
Bernd Gloss ◽  
Gisele Giannocco ◽  
Eric A. Swanson ◽  
Anselmo S. Moriscot ◽  
Grazia Chiellini ◽  
...  

2005 ◽  
Vol 288 (1) ◽  
pp. E236-E245 ◽  
Author(s):  
Xiaoxiong Shen ◽  
Qiao-Ling Li ◽  
Gregory A. Brent ◽  
Theodore C. Friedman

The prohormone convertases (PCs) PC1 and PC2 are involved in the tissue-specific endoproteolytic processing of neuropeptide precursors within the secretory pathway. We previously showed that changes in thyroid status altered pituitary PC2 mRNA and that this regulation was due to triiodothyronine-dependent interaction of the thyroid hormone receptor (TR) with negative thyroid hormone response elements (nTREs) contained in a large proximal region of the human PC2 promoter. In the current study, we examined the in vivo regulation of brain PC2 mRNA by thyroid status and found that 6- n-propyl-2-thiouracil-induced hypothyroidism stimulated, whereas thyroxine-induced hyperthyroidism suppressed, PC2 mRNA levels in the rat hypothalamus and cerebral cortex. To address the mechanism of T3 regulation of the PC2 gene, we used human PC2 (hPC2) promoter constructs transiently transfected into GH3 cells and found that triiodothyronine negatively and 9- cis-retinoic acid positively regulated hPC2 promoter activity. EMSAs, using purified TRα1 and retinoid X receptor-β (RXRβ) proteins demonstrated that TRα bound the distal putative nTRE-containing oligonucleotide in the PC2 promoter, and RXR bound to both nTRE-containing oligonucleotides. EMSAs with oligonucleotides containing deletion mutations of the nTREs demonstrated that the binding to TR and RXR separately is reduced, but specific binding to TR and RXR together persists even with deletion of each putative nTRE. We conclude that there are two novel TRE-like sequences in the hPC2 promoter and that these regions act in concert in a unique manner to facilitate the effects of thyroid hormone and 9- cis-retinoic acid on PC2.


Sign in / Sign up

Export Citation Format

Share Document