scholarly journals RhoA/Rho Kinase Blocks Muscle Differentiation via Serine Phosphorylation of Insulin Receptor Substrate-1 and -2

2007 ◽  
Vol 21 (9) ◽  
pp. 2282-2293 ◽  
Author(s):  
Min Jin Lim ◽  
Kyu Jin Choi ◽  
Yan Ding ◽  
Jin Hwan Kim ◽  
Bum Shik Kim ◽  
...  

Abstract Although the RhoA/Rho kinase (RhoA/ROK) pathway has been extensively investigated, its roles and downstream signaling pathways are still not well understood in myogenic processes. Therefore, we examined the effects of RhoA/ROK on myogenic processes and their signaling molecules using H9c2 and C2C12 cells. Increases in RhoA/ROK activities and serine phosphorylation levels of insulin receptor substrate (IRS)-1 (Ser307 and Ser636/639) and IRS-2 were found in proliferating myoblasts, whereas IRS-1/2 tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity increased during the differentiation process. ROK strongly bound to IRS-1/2 in proliferation medium but dissociated from them in differentiation medium (DM). ROK inactivation by a ROK inhibitor, Y27632, or a dominant-negative ROK, decreased IRS-1/2 serine phosphorylation with increases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity, which led to muscle differentiation even in proliferation medium. Inhibition of ROK also enhanced differentiation in DM. ROK activation by a constitutive active ROK blocked muscle differentiation with the increased IRS-1/2 serine phosphorylation, followed by decreases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity in DM. Interestingly, fibroblast growth factor-2 added to DM also blocked muscle differentiation through RhoA/ROK activation. Fibroblast growth factor-2 blockage of muscle differentiation was reversed by Y27632. Collectively, these results suggest that the RhoA/ROK pathway blocks muscle differentiation by phosphorylating IRS proteins at serine residues, resulting in the decreased IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity. The absence of the inhibitory effects of RhoA/ROK in DM due to low concentrations of myogenic inhibitory growth factors seems to allow IRS-1/2 tyrosine phosphorylation, which stimulates muscle differentiation via transducing normal myogenic signaling.

2002 ◽  
Vol 368 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Duraisamy SENTHIL ◽  
Goutam GHOSH CHOUDHURY ◽  
Basant K. BHANDARI ◽  
Balakuntalam S. KASINATH

Vascular endothelial growth factor (VEGF) isoforms exert their biological effects through receptors that possess intrinsic tyrosine kinase activity. Whether VEGF binding to its receptors recruits insulin receptor substrate (IRS) family of docking proteins to the receptor is not known. Following incubation of mouse kidney proximal tubular epithelial cells with VEGF, we observed an increase in tyrosine phosphorylation of several proteins, including one of 200kDa, suggesting possible regulation of phosphorylation of IRS proteins. VEGF augmented tyrosine phosphorylation of IRS-1 in kidney epithelial cells and rat heart endothelial cells in a time-dependent manner. In the epithelial cells, association of IRS-1 with type 2 VEGF receptor was promoted by VEGF. VEGF also increased association of IRS-1 with the p85 regulatory subunit of phosphoinositide 3-kinase (PI 3-kinase), and PI 3-kinase activity in IRS-1 immunoprecipitates was increased in VEGF-treated cells. Incubation of epithelial cells with antisense IRS-1 oligonucleotide, but not sense oligonucleotide, reduced expression of the protein and VEGF-induced PI 3-kinase activity in IRS-1 immunoprecipitates. Additionally, VEGF-induced protein synthesis was also impaired by antisense but not sense IRS-1 oligonucleotide. These data provide the first evidence that binding of VEGF to its type 2 receptor promotes association of IRS-1 with the receptor complex. This association may account for some of the increase in VEGF-induced PI 3-kinase activity, and the increase in de novo protein synthesis seen in renal epithelial cells.


2010 ◽  
Vol 30 (7) ◽  
pp. 1634-1649 ◽  
Author(s):  
Jaime Gutiérrez ◽  
Enrique Brandan

ABSTRACT Heparan sulfate proteoglycans (HSPGs) are critical modulators of growth factor activities. Skeletal muscle differentiation is strongly inhibited by fibroblast growth factor 2 (FGF-2). We have shown that HSPGs present at the plasma membrane are expressed in myoblasts and are downregulated during muscle differentiation. An exception is glypican-1, which is present throughout the myogenic process. Myoblasts that do not express glypican-1 exhibit defective differentiation, with an increase in the receptor binding of FGF-2, concomitant with increased signaling. Glypican-1-deficient myoblasts show decreased expression of myogenin, the master gene that controls myogenesis, myosin, and the myoblast fusion index. Reversion of these defects was induced by expression of rat glypican-1. Glypican-1 is the only HSPG localized in lipid raft domains in myoblasts, resulting in the sequestration of FGF-2 away from FGF-2 receptors (FGFRs) located in nonraft domains. A chimeric glypican-1, containing syndecan-1 transmembrane and cytoplasmic domains, is located in nonraft domains interacting with FGFR-IV- and enhanced FGF-2-dependent signaling. Thus, glypican-1 acts as a positive regulator of muscle differentiation by sequestering FGF-2 in lipid rafts and preventing its binding and dependent signaling.


Sign in / Sign up

Export Citation Format

Share Document