scholarly journals Trimmed extreme value estimators for censored heavy-tailed data

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Martin Bladt ◽  
Hansjörg Albrecher ◽  
Jan Beirlant
Keyword(s):  
Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2208
Author(s):  
Ekaterina Morozova ◽  
Vladimir Panov

This paper deals with the extreme value analysis for the triangular arrays which appear when some parameters of the mixture model vary as the number of observations grows. When the mixing parameter is small, it is natural to associate one of the components with “an impurity” (in the case of regularly varying distribution, “heavy-tailed impurity”), which “pollutes” another component. We show that the set of possible limit distributions is much more diverse than in the classical Fisher–Tippett–Gnedenko theorem, and provide the numerical examples showing the efficiency of the proposed model for studying the maximal values of the stock returns.


2011 ◽  
Vol 27 (4) ◽  
pp. 844-884 ◽  
Author(s):  
Jonathan B. Hill

New notions of tail and nontail dependence are used to characterize separately extremal and nonextremal information, including tail log-exceedances and events, and tail-trimmed levels. We prove that near epoch dependence (McLeish, 1975; Gallant and White, 1988) and L0-approximability (Pötscher and Prucha, 1991) are equivalent for tail events and tail-trimmed levels, ensuring a Gaussian central limit theory for important extreme value and robust statistics under general conditions. We apply the theory to characterize the extremal and nonextremal memory properties of possibly very heavy-tailed GARCH processes and distributed lags. This in turn is used to verify Gaussian limits for tail index, tail dependence, and tail-trimmed sums of these data, allowing for Gaussian asymptotics for a new tail-trimmed least squares estimator for heavy-tailed processes.


2019 ◽  
Vol 34 (2) ◽  
pp. 200-220
Author(s):  
Jingjing Zou ◽  
Richard A. Davis ◽  
Gennady Samorodnitsky

AbstractIn this paper, we are concerned with the analysis of heavy-tailed data when a portion of the extreme values is unavailable. This research was motivated by an analysis of the degree distributions in a large social network. The degree distributions of such networks tend to have power law behavior in the tails. We focus on the Hill estimator, which plays a starring role in heavy-tailed modeling. The Hill estimator for these data exhibited a smooth and increasing “sample path” as a function of the number of upper order statistics used in constructing the estimator. This behavior became more apparent as we artificially removed more of the upper order statistics. Building on this observation we introduce a new version of the Hill estimator. It is a function of the number of the upper order statistics used in the estimation, but also depends on the number of unavailable extreme values. We establish functional convergence of the normalized Hill estimator to a Gaussian process. An estimation procedure is developed based on the limit theory to estimate the number of missing extremes and extreme value parameters including the tail index and the bias of Hill's estimator. We illustrate how this approach works in both simulations and real data examples.


2019 ◽  
Vol 42 (2) ◽  
pp. 143-166 ◽  
Author(s):  
Renato Santos Silva ◽  
Fernando Ferraz Nascimento

Extreme Value Theory (EVT) is an important tool to predict efficient gains and losses. Its main areas of analyses are economic and environmental. Initially, for that form of event, it was developed the use of patterns of parametric distribution such as Normal and Gamma. However, economic and environmental data presents, in most cases, a heavy-tailed distribution, in contrast to those distributions. Thus, it was faced a great difficult to frame extreme events. Furthermore, it was almost impossible to use conventional models, making predictions about non-observed events, which exceed the maximum of observations. In some situations EVT is used to analyse only the maximum of some dataset, which provide few observations, and in those cases it is more effective to use the r largest-order statistics. This paper aims to propose Bayesian estimators' for parameters of the r largest-order statistics. During the research, it was used Monte Carlo simulation to analyze the data, and it was observed some properties of those estimators, such as mean, variance, bias and Root Mean Square Error (RMSE). The estimation of the parameters provided inference for its parameters and return levels. This paper also shows a procedure to the choice of the r-optimal to the r largest-order statistics, based on the Bayesian approach applying Markov chains Monte Carlo (MCMC). Simulation results reveal that the Bayesian approach has a similar performance to the Maximum Likelihood Estimation, and the applications were developed using the Bayesian approach and showed a gain in accurary compared with otherestimators.


Extremes ◽  
2016 ◽  
Vol 19 (3) ◽  
pp. 517-547 ◽  
Author(s):  
Richard A. Davis ◽  
Johannes Heiny ◽  
Thomas Mikosch ◽  
Xiaolei Xie

Author(s):  
M. de Carvalho ◽  
S. Pereira ◽  
P. Pereira ◽  
P. de Zea Bermudez

AbstractWe introduce a novel regression model for the conditional left and right tail of a possibly heavy-tailed response. The proposed model can be used to learn the effect of covariates on an extreme value setting via a Lasso-type specification based on a Lagrangian restriction. Our model can be used to track if some covariates are significant for the lower values, but not for the (right) tail—and vice versa; in addition to this, the proposed model bypasses the need for conditional threshold selection in an extreme value theory framework. We assess the finite-sample performance of the proposed methods through a simulation study that reveals that our method recovers the true conditional distribution over a variety of simulation scenarios, along with being accurate on variable selection. Rainfall data are used to showcase how the proposed method can learn to distinguish between key drivers of moderate rainfall, against those of extreme rainfall. Supplementary materials accompanying this paper appear online.


Sign in / Sign up

Export Citation Format

Share Document