scholarly journals Extremal transition and quantum cohomology: Examples of toric degeneration

2016 ◽  
Vol 56 (4) ◽  
pp. 873-905 ◽  
Author(s):  
Hiroshi Iritani ◽  
Jifu Xiao
2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


2000 ◽  
Vol 15 (02) ◽  
pp. 101-120 ◽  
Author(s):  
MASAO JINZENJI
Keyword(s):  

In this letter, we propose the formulas that compute all the rational structural constants of the quantum Kähler subring of Fano hypersurfaces.


1998 ◽  
Vol 50 (3) ◽  
pp. 537-590 ◽  
Author(s):  
Xiaobo Liu ◽  
Gang Tian

2020 ◽  
Vol 71 (2) ◽  
pp. 395-438
Author(s):  
Jack Smith

Abstract We give a short new computation of the quantum cohomology of an arbitrary smooth (semiprojective) toric variety $X$, by showing directly that the Kodaira–Spencer map of Fukaya–Oh–Ohta–Ono defines an isomorphism onto a suitable Jacobian ring. In contrast to previous results of this kind, $X$ need not be compact. The proof is based on the purely algebraic fact that a class of generalized Jacobian rings associated to $X$ are free as modules over the Novikov ring. When $X$ is monotone the presentation we obtain is completely explicit, using only well-known computations with the standard complex structure.


Author(s):  
Fumihiko Sanda

Abstract Assume the existence of a Fukaya category $\textrm{Fuk}(X)$ of a compact symplectic manifold $X$ with some expected properties. In this paper, we show $\mathscr{A} \subset \textrm{Fuk}(X)$ split generates a summand $\textrm{Fuk}(X)_e \subset \textrm{Fuk}(X)$ corresponding to an idempotent $e \in QH^{\bullet }(X)$ if the Mukai pairing of $\mathscr{A}$ is perfect. Moreover, we show $HH^{\bullet }(\mathscr{A}) \cong QH^{\bullet }(X) e$. As an application, we compute the quantum cohomology and the Fukaya category of a blow-up of $\mathbb{C} P^2$ at four points with a monotone symplectic structure.


Sign in / Sign up

Export Citation Format

Share Document