Prevention of Air Embolism with Positive End Expiratory Pressure

Neurosurgery ◽  
1983 ◽  
Vol 12 (5) ◽  
pp. 503-506 ◽  
Author(s):  
Rand M. Voorhies ◽  
Richard A. R. Fraser ◽  
Alan Van Poznak

Abstract Pulmonary air embolism is recognized as a possible complication of neurosurgical procedures performed with the patient in the sitting position. A variety of preventive and therapeutic modalities have been proposed in the literature. We have used a consistent regimen consisting of precordial Doppler monitoring, measurement of end expiratory CO2, the semireclining position, and positive end expiratory pressure (PEEP). A right atrial catheter was not used. This approach has given good results in 81 patients: there was significant air embolism in only 1 case (1.2%). We believe that PEEP is as important in the prevention as it is in the treatment of pulmonary air embolism. By flexibly adjusting the level of PEEP, one may recreate the hemodynamic equivalent of the prone position, thereby eliminating the risk of venous air embolism and simultaneously the need for right heart catheterization.

Neurosurgery ◽  
1978 ◽  
Vol 2 (1) ◽  
pp. 39-42 ◽  
Author(s):  
Philippa Newfield ◽  
Maurice S. Albin ◽  
Julian S. Chestnut ◽  
Joseph Maroon

Abstract Doppler ultrasonic cardiac monitoring of patients undergoing trans-sphenoidal pituitary operations in the semisitting position has revealed the occurrence of venous air embolism in 3 of 31 consecutive cases. One such case is presented. Air may be drawn into the venous system whenever a gradient exists between the site of operation and the right heart. During trans-sphenoidal operations the most likely portals of venous air entry include the intercavernous connections within the sella, venous channels through nonpneumatized bone, inadequately sealed subnasal vessels, and vascularized metastatic tissue in the pituitary. Because the potential for morbidity and mortality from air embolism is so great, rapid diagnosis with the Doppler unit and prompt treatment, including aspiration of air from the right atrial catheter, administration of 100% oxygen, performance of the Valsalva maneuver, saline irrigation of the wound, and hemostasis of open vessels, are essential. Technetium-macroaggregated albumin (T EMAA) lung scans are helpful in postoperative verification of venous air embolism.


2011 ◽  
Vol 115 (3) ◽  
pp. 626-629 ◽  
Author(s):  
Maurice S. Albin ◽  
David S. Warner

Clinical Considerations Concerning Detection of Venous Air Embolism. By Maurice S. Albin, Robert G. Carroll, Joseph C. Maroon. Neurosurgery 1978; 3:380-84. Abstract used with permission from the Congress of Neurological Surgeons, copyright 1978. Venous air embolism during neurosurgical procedures (detected by Doppler ultrasound and aspiration via a right atrial catheter) was noted in 100 of 400 patients in the sitting position, 5 of 60 patients in the lateral position, 7 of 48 patients in the supine position, and 1 of 10 patients in the monitored prone position. We confirmed venous air embolism in many of these patients by using serial technetium-microaggregated albumin lung scans. Gravitational gradients from the venous portal of entrance to the right side of the heart were as small as 5.0 cm, with aspiration of 200 ml of air occurring. Doppler ultrasonic air bubble detection and aspiration through a previously inserted right atrial catheter are critical factors in the diagnosis and treatment of this condition.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Taku Omori ◽  
Goki Uno ◽  
Shunsuke Shimada ◽  
Florian Rader ◽  
Robert J. Siegel ◽  
...  

Background: A new grading of tricuspid regurgitation (TR) beyond severe has been proposed. However, few studies assessing the validity of such a new grading scheme of TR have been conducted. Therefore, we evaluated associations of TR grades beyond severe with patient outcome and hemodynamics. Methods: We retrospectively studied patients who underwent 2-dimensional echocardiography and were diagnosed with severe TR between January 2014 and December 2015. According to the vena contracta width of TR (VC), the patients were classified into 2 groups: VC under 14 mm (VC<14 mm) and VC 14 mm or greater (VC≥14 mm). Hemodynamic parameters were estimated by echocardiography and were obtained by right heart catheterization. Cardiovascular events were defined as cardiovascular death or admission for heart failure. Results: A total of 679 patients (mean 72±17 years, 56% women) were included. During follow-up (median, 158 days; range, 29–891), 210 patients experienced cardiovascular events. By multivariate analysis, VC≥14 mm and left ventricular ejection fraction were independent predictors of cardiovascular events (hazard ratio, 1.57 [1.06–2.33]; hazard ratio, 0.99 [0.98–0.99], respectively). Patients with VC≥14 mm had significantly lower cardiac index (median, 1.8 versus 2.1 L/min per m 2 , P =0.001) and a higher prevalence of right atrial pressure 15 mm Hg (74% versus 60%, P <0.001) on echocardiography. Also, right heart catheterization confirmed higher right atrial pressure in patients with VC≥14 mm than those with VC<14 mm (16±8 versus 12±6 mm Hg, P =0.004). The new subset classification developed by cardiac index and right atrial pressure both on echocardiography predicted cardiovascular events (Log-rank P <0.001). Conclusions: The relationship of VC≥14 mm to adverse outcome and poor hemodynamics showed the clinical relevance and need of a new grading system beyond severe. The new hemodynamic subset classification provides additional prognostic value for cardiovascular events in patients with severe TR.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Libo Wang ◽  
Jonathan Harrison ◽  
Elizabeth Dranow ◽  
Lillian Khor

Introduction: Accurate intravascular volume status assessment is central to heart failure management, but current non-invasive bedside techniques remain a challenge. The visual inspection of jugular venous pulsation (JVP) in a reclined position and measuring its height from the sternal notch has been used as a surrogate for right atrial pressure (RAP). There are no studies on the predictive value of a visible internal jugular vein (IJV) in the upright position (U 2 JVP). Hypothesis: Point of care ultrasound (POCUS) for volume assessment in the upright position is predictive of clinically significant hypervolemia. Methods: Adult patients undergoing right heart catheterization (RHC) were enrolled prior for IJV imaging with point of care ultrasound (POCUS) device, Butterfly iQ™. The IJV and its size in comparison to the carotid artery was identified on ultrasound with the patient upright. Elevated RAP and PCWP was present if the IJV was still visible and not collapsed throughout the entirety of the respiratory cycle. Valsalva was used to confirm the position of a collapsed IJV. Results: 72 participants underwent U 2 JVP assessment on the same day prior to RHC. Average BMI was 31.9 kg/m2. The area under the curve (AUC) of U 2 JVP predicting RAP greater than 10 mmHg and PCWP of 15 mmhg or higher on RHC was 0.78 (95% CI 0.66-0.9, p<0.001), with AUC of 0.86 and 0.74 for non-obese and obese subgroups respectively, p= 0.38. The finding of a visible U 2 JVP in the upright position was 70.6 % sensitive and 85.5 % specific with a negative predictive value of 90.4% for identifying both RAP greater than 10 mmHg and PCWP equal or greater than 15 mmHg. Conclusions: The U 2 JVP is novel and pragmatic bed-side approach to the assessment of clinically significant elevated intra-cardiac pressures in our increasingly obese heart failure population.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Emily K Zern ◽  
Paula Rambarat ◽  
Samantha Paniagua ◽  
Elizabeth Liu ◽  
Jenna McNeill ◽  
...  

Introduction: The pulmonary artery pulsatility index (PAPi), calculated from the ratio of pulmonary artery pulse pressure to right atrial pressure, was initially described as a novel predictor of right ventricular failure after inferior myocardial infarction or left ventricular assist device implantation. Whether PAPi is associated with adverse outcomes in broader samples is unknown. Hypothesis: A lower PAPi is associated with mortality in a broad population referred for right heart catheterization. Methods: We examined consecutive patients undergoing right heart catheterization between 2005-2016 in a hospital-based cohort. The following exclusion criteria were applied: shock or cardiac arrest within 24 hours of catheterization, presence of mechanical circulatory support, prior cardiac transplant, prior valvular surgery, or those with missing key clinical covariates. Multivariable Cox models were utilized to examine the association between PAPi and mortality. Analyses were adjusted for age, sex, BMI, hypertension, diabetes, prior myocardial infarction, and prior heart failure. Results: We studied 8559 patients with mean age 63 years and 40% women. We found that patients in the lowest quartile of PAPi were younger, with greater proportion of men, and higher BMI, yet similar NT-proBNP compared with other quartiles ( Table 1 ). Over 12.5 years of follow-up, there were 2441 death events. Patients in the lowest PAPi quartile had a 31% greater risk of death compared with the highest quartile (multivariable adjusted HR 1.31, 95% CI 1.15-1.48, p<0.001), whereas no differences in survival were seen among individuals in quartile 2 or 3 (p>0.05 vs quartile 4 for both). Conclusions: Patients in the lowest PAPi quartile had a 31% increased risk of all-cause mortality in a broad population referred for right heart catheterization. These findings highlight a potential role for PAPi in identifying high-risk individuals across a spectrum of disease.


2000 ◽  
Vol 88 (2) ◽  
pp. 655-661 ◽  
Author(s):  
Thomas J. K. Toung ◽  
H. Aizawa ◽  
Richard J. Traystman

Mechanical ventilation with positive end-expiratory pressure (PEEP) may prevent venous air embolism in the sitting position because cerebral venous pressure (Pcev) could be increased by the PEEP-induced increase in right atrial pressure (Pra). Whereas it is clear that there is a linear transmission of the PEEP-induced increase in Pra to Pcev while the dog is in the prone position, the mechanism of the transmission with the dog in the head-elevated position is unclear. We tested the hypothesis that a Starling resistor-type mechanism exists in the jugular veins when the head is elevated. In one group of dogs, increasing PEEP linearly increased Pcev with the dog in the prone position (head at heart level, slope = 0.851) but did not increase Pcev when the head was elevated. In another group of dogs, an external chest binder was used to produce a larger PEEP-induced increase in Pra. Further increasing Pra increased Pcev only after Pra exceeded a pressure of 19 mmHg (break pressure). This sharp inflection in the upstream (Pcev)-downstream (Pra) relationship suggests that this may be caused by a Starling resistor-type mechanism. We conclude that jugular venous collapse serves as a significant resistance in the transmission of Pra to Pcev in the head-elevated position.


2021 ◽  
Author(s):  
Ashwin Venkateshvaran ◽  
Natavan Seidova ◽  
Hande Oktay Tureli ◽  
Barbro Kjellström ◽  
Lars H Lund ◽  
...  

Abstract BACKGROUND. Accurate assessment of pulmonary artery (PA) pressures is integral to diagnosis, follow-up and therapy selection in pulmonary hypertension (PH). Despite wide utilization, the accuracy of echocardiography to estimate PA pressures has been debated. We aimed to evaluate echocardiographic accuracy to estimate right heart catheterization (RHC) based PA pressures in a large, dual-centre hemodynamic database. METHODS. Consecutive PH referrals that underwent comprehensive echocardiography within 3 hours of clinically indicated right heart catheterization were enrolled. Subjects with absent or severe, free-flowing tricuspid regurgitation (TR) were excluded. Accuracy was defined as mean bias between echocardiographic and invasive measurements on Bland-Altman analysis for the cohort and estimate difference within ±10mmHg of invasive measurements for individual diagnosis. RESULTS. In 419 subjects, echocardiographic PA systolic and mean pressures demonstrated minimal bias with invasive measurements (+2.4 and +1.9mmHg respectively) but displayed wide limits of agreement (-20 to +25 and -14 to +18mmHg respectively) and frequently misclassified subjects. Recommendation-based right atrial pressure (RAP) demonstrated poor precision and was falsely elevated in 32% of individual cases. Applying a fixed, median RAP to echocardiographic estimates resulted in relatively lower bias between modalities when assessing PA systolic (+1.4mmHg; 95% limits of agreement +25 to –22mmHg) and PA mean pressures (+1.4mmHg; 95% limits of agreement +19 to -16mmHg).CONCLUSIONS. Echocardiography accurately represents invasive PA pressures for population studies but may be misleading for individual diagnosis owing to modest precision and frequent misclassification. Recommendation-based estimates of RAPmean may not necessarily contribute to greater accuracy of PA pressure estimates.


2021 ◽  
Author(s):  
Camila Farnese Rezende ◽  
Eliane Viana Mancuzo ◽  
Maria Carmo P Nunes ◽  
Ricardo de Amorim Corrêa

Abstract Purpose: Studies in the context of research have shown a significant disagreement between the echocardiographic measurement of the systolic pulmonary artery pressure (sPAP) and right atrial pressure (RAP) and that obtained by right heart catheterization (RHC). We compare measurements of sPAP and RAP, verified by transthoracic echocardiogram (TTE) with those detected by RHC in patients being investigated for pulmonary hypertension (PH). Methods: Cross-sectional study was performed in a context of usual clinical practice in the public referral center for PH, including patients with high or intermediate echocardiographic probability of pulmonary arterial hypertension and chronic thromboembolic PH. Bland-Altman test was used to assess the agreement amongthe values and ROC curve to identify sPAP and tricuspid regurgitation velocity (TRV) values ​​with better accuracy. Clinically acceptable differences of 10 mmHg for sPAP and 5 mmHg for RAP were considered.Results: Ninety-five patients were included. The Bland-Altman analysis showed a bias of 8.03 mmHg for sPAP and -3.30 mmHg for RAP. Area under the curve for sPAP and TRV measured by TTE were 0.936(95% CI: 0.836-1.0) and 0.919(95% CI: 0.837-1.0), respectively. According to the pre-defined pressure differences, only 33.4% of the echocardiographic estimate of sPAP and 55.1% of RAP were accurate, as compared to the measurements obtained by RHC. Conclusions: Real life study revealed that echocardiographic evaluation demonstrated a high discriminatory power for diagnosis of PH, but sPAP and RAP measurements showed significant disagreements in relation to hemodynamic measures. The technical improvement of diagnostic services may contribute to the earlier recognition of this condition by TTE.


2020 ◽  
Vol 9 (22) ◽  
Author(s):  
Mona Lichtblau ◽  
Patrick R. Bader ◽  
Stéphanie Saxer ◽  
Charlotte Berlier ◽  
Esther I. Schwarz ◽  
...  

Background We investigated changes in right atrial pressure (RAP) during exercise and their prognostic significance in patients assessed for pulmonary hypertension (PH). Methods and Results Consecutive right heart catheterization data, including RAP recorded during supine, stepwise cycle exercise in 270 patients evaluated for PH, were analyzed retrospectively and compared among groups of patients with PH (mean pulmonary artery pressure [mPAP] ≥25 mm Hg), exercise‐induced PH (exPH; resting mPAP <25 mm Hg, exercise mPAP >30 mm Hg, and mPAP/cardiac output >3 Wood Units (WU)), and without PH (noPH). We investigated RAP changes during exercise and survival over a median (quartiles) observation period of 3.7 (2.8–5.6) years. In 152 patients with PH, 58 with exPH, and 60 with noPH, median (quartiles) resting RAP was 8 (6–11), 6 (4–8), and 6 (4–8) mm Hg ( P <0.005 for noPH and exPH versus PH). Corresponding peak changes (95% CI) in RAP during exercise were 5 (4–6), 3 (2–4), and −1 (−2 to 0) mm Hg (noPH versus PH P <0.001, noPH versus exPH P =0.027). RAP increase during exercise correlated with mPAP/cardiac output increase ( r =0.528, P <0.001). The risk of death or lung transplantation was higher in patients with exercise‐induced RAP increase (hazard ratio, 4.24; 95% CI, 1.69–10.64; P =0.002) compared with patients with unaltered or decreasing RAP during exercise. Conclusions In patients evaluated for PH, RAP during exercise should not be assumed as constant. RAP increase during exercise, as observed in exPH and PH, reflects hemodynamic impairment and poor prognosis. Therefore, our data suggest that changes in RAP during exercise right heart catheterization are clinically important indexes of the cardiovascular function.


Sign in / Sign up

Export Citation Format

Share Document