scholarly journals Quantitative Estimates for the Long-Time Behavior of an Ergodic Variant of the Telegraph Process

2012 ◽  
Vol 44 (4) ◽  
pp. 977-994 ◽  
Author(s):  
Joaquin Fontbona ◽  
Hélène Guérin ◽  
Florent Malrieu

Motivated by stability questions on piecewise-deterministic Markov models of bacterial chemotaxis, we study the long-time behavior of a variant of the classic telegraph process having a nonconstant jump rate that induces a drift towards the origin. We compute its invariant law and show exponential ergodicity, obtaining a quantitative control of the total variation distance to equilibrium at each instant of time. These results rely on an exact description of the excursions of the process away from the origin and on the explicit construction of an original coalescent coupling for both the velocity and position. Sharpness of the obtained convergence rate is discussed.

2012 ◽  
Vol 44 (04) ◽  
pp. 977-994
Author(s):  
Joaquin Fontbona ◽  
Hélène Guérin ◽  
Florent Malrieu

Motivated by stability questions on piecewise-deterministic Markov models of bacterial chemotaxis, we study the long-time behavior of a variant of the classic telegraph process having a nonconstant jump rate that induces a drift towards the origin. We compute its invariant law and show exponential ergodicity, obtaining a quantitative control of the total variation distance to equilibrium at each instant of time. These results rely on an exact description of the excursions of the process away from the origin and on the explicit construction of an original coalescent coupling for both the velocity and position. Sharpness of the obtained convergence rate is discussed.


2017 ◽  
Vol 27 (12) ◽  
pp. 2185-2228 ◽  
Author(s):  
Stefania Patrizi ◽  
Enrico Valdinoci

We describe the asymptotic states for the solutions of a nonlocal equation of evolutionary type, which have the physical meaning of the atom dislocation function in a periodic crystal. More precisely, we can describe accurately the “smoothing effect” on the dislocation function occurring slightly after a “particle collision” (roughly speaking, two opposite transitions layers average out) and, in this way, we can trap the atom dislocation function between a superposition of transition layers which, as time flows, approaches either a constant function or a single heteroclinic (depending on the algebraic properties of the orientations of the initial transition layers). The results are endowed with explicit and quantitative estimates and, as a byproduct, we show that the ODE systems of particles that govern the evolution of the transition layers does not admit stationary solutions (i.e. roughly speaking, transition layers always move).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document