scholarly journals Rhoptry kinase protein 39 (ROP39) is a novel factor that recruits host mitochondria to the parasitophorous vacuole of Toxoplasma gondii

Biology Open ◽  
2021 ◽  
Vol 10 (9) ◽  
Author(s):  
Junpei Fukumoto ◽  
Takaya Sakura ◽  
Ryuma Matsubara ◽  
Michiru Tahara ◽  
Motomichi Matsuzaki ◽  
...  

ABSTRACT Most intracellular pathogens replicate in a vacuole to avoid the defense system of the host. A few pathogens recruit host mitochondria around those vacuoles, but the molecules responsible for mitochondrial recruitment remain unidentified. It is only in the apicomplexan parasite Toxoplasma gondii, that mitochondrial association factor 1b (MAF1b) has been identified as an association factor for host mitochondria. Here, we show that rhoptry kinase family protein 39 (ROP39) induces host mitochondrial recruitment in T. gondii. We found that the abundance of ROP39 was increased on host mitochondria extracted from human foreskin fibroblasts (HFFs) infected with T. gondii. ROP39 expressed exogenously in HFFs localized on host mitochondria, indicating that it has the potential to bind to host mitochondria without assistance from other parasite factors. Confocal microscopy revealed that ROP39 colocalized with host mitochondria on the membrane of parasitophorous vacuoles, in which the parasites reside. Moreover, we observed about a 10% reduction in the level of mitochondrial association in rop39-knockout parasites compared with a parental strain.

2020 ◽  
Vol 74 (1) ◽  
pp. 567-586 ◽  
Author(s):  
Yifan Wang ◽  
Lamba Omar Sangaré ◽  
Tatiana C. Paredes-Santos ◽  
Jeroen P. J. Saeij

Many intracellular pathogens, including the protozoan parasite Toxoplasma gondii, live inside a vacuole that resides in the host cytosol. Vacuolar residence provides these pathogens with a defined niche for replication and protection from detection by host cytosolic pattern recognition receptors. However, the limiting membrane of the vacuole, which constitutes the host-pathogen interface, is also a barrier for pathogen effectors to reach the host cytosol and for the acquisition of host-derived nutrients. This review provides an update on the specialized secretion and trafficking systems used by Toxoplasma to overcome the barrier of the parasitophorous vacuole membrane and thereby allow the delivery of proteins into the host cell and the acquisition of host-derived nutrients.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Felice D. Kelly ◽  
Brian M. Wei ◽  
Alicja M. Cygan ◽  
Michelle L. Parker ◽  
Martin J. Boulanger ◽  
...  

ABSTRACT Parasites interact intimately with their hosts, and the interactions shape both parties. The common human parasite Toxoplasma gondii replicates exclusively in a vacuole in a host cell and alters its host cell’s environment through secreted proteins. One of these secreted proteins, MAF1b, acts to concentrate mitochondria around the parasite’s vacuole, and this relocalization alters the host immune response. Many other intracellular pathogens also recruit host mitochondria, but the identities of the partners that mediate this interaction have not previously been described in any infection. Here, we show that Toxoplasma MAF1b binds to the multifunctional MIB protein complex on the host mitochondria. Reducing the levels of the proteins in this mitochondrial complex reduces the close association of host cell mitochondria and the parasite’s vacuole. This work provides new insight into a key host-pathogen interaction and identifies possible targets for future therapeutic intervention as well as a more molecular understanding of important biology. Many diverse intracellular pathogens, such as Legionella pneumophila, Chlamydia psittaci, Encephalitozoon sp., and Toxoplasma gondii, manipulate and relocate host cell organelles, including mitochondria. Toxoplasma tachyzoites use a secreted protein, mitochondrial association factor 1b (MAF1b), to drive the association between the host mitochondria and the membrane of the parasitophorous vacuole, in which the parasites grow. The identity of the host partner in this interaction, however, has not previously been identified. By exogenously expressing tagged MAF1b in mouse embryonic fibroblasts, we were able to isolate host cell proteins that specifically interact with MAF1b. We then verified these interactions in the MAF1b-expressing fibroblasts, as well as in the context of parasite infection in human fibroblasts and HeLa cells. The results show that a host cell mitochondrial complex, the mitochondrial intermembrane space bridging (MIB) complex, specifically interacts with MAF1b. We further demonstrate that a version of MAF1b that is deficient in host-mitochondrial association does not efficiently coprecipitate the MIB complex. Validation of the importance of the MAF1b-MIB interaction came from showing that knockdown of two MIB complex components, MIC60 and SAM50, substantially reduces mitochondrial association with the parasitophorous vacuole membrane. This interaction between a secreted membrane-integral parasite protein and a membrane-bound complex of a host organelle represents the first instance of organelle relocalization in which both the host and pathogen molecules are known and provides the foundation for more detailed biochemical studies. IMPORTANCE Parasites interact intimately with their hosts, and the interactions shape both parties. The common human parasite Toxoplasma gondii replicates exclusively in a vacuole in a host cell and alters its host cell’s environment through secreted proteins. One of these secreted proteins, MAF1b, acts to concentrate mitochondria around the parasite’s vacuole, and this relocalization alters the host immune response. Many other intracellular pathogens also recruit host mitochondria, but the identities of the partners that mediate this interaction have not previously been described in any infection. Here, we show that Toxoplasma MAF1b binds to the multifunctional MIB protein complex on the host mitochondria. Reducing the levels of the proteins in this mitochondrial complex reduces the close association of host cell mitochondria and the parasite’s vacuole. This work provides new insight into a key host-pathogen interaction and identifies possible targets for future therapeutic intervention as well as a more molecular understanding of important biology.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Jaya Bhushan ◽  
Joshua B. Radke ◽  
Yi-Chieh Perng ◽  
Michael Mcallaster ◽  
Deborah J. Lenschow ◽  
...  

ABSTRACT The intracellular protozoan parasite Toxoplasma gondii is capable of infecting most nucleated cells, where it survives in a specially modified compartment called the parasitophorous vacuole (PV). Interferon gamma (IFN-γ) is the major cytokine involved in activating cell-autonomous immune responses to inhibit parasite growth within this intracellular niche. In HeLa cells, IFN-γ treatment leads to ubiquitination of susceptible parasite strains, recruitment of the adaptors p62 and NDP52, and engulfment in microtubule-associated protein 1 light chain 3 (LC3)-positive membranes that restrict parasite growth. IFN-γ-mediated growth restriction depends on core members of the autophagy (ATG) pathway but not the initiation or degradative steps in the process. To explore the connection between these different pathways, we used permissive biotin ligation to identify proteins that interact with ATG5 in an IFN-γ-dependent fashion. Network analysis of the ATG5 interactome identified interferon-stimulated gene 15 (ISG15), which is highly upregulated by IFN treatment, as a hub connecting the ATG complex with other IFN-γ-induced genes, suggesting that it forms a functional link between the pathways. Deletion of ISG15 resulted in impaired recruitment of p62, NDP52, and LC3 to the PV and loss of IFN-γ-restricted parasite growth. The function of ISG15 required conjugation, and a number of ISGylated targets overlapped with the IFN-γ-dependent ATG5 interactome, including the adapter p62. Collectively, our findings establish a role for ISG15 in connecting the ATG pathway with IFN-γ-dependent restriction of T. gondii in human cells. IMPORTANCE Interferon(s) provide the primary defense against intracellular pathogens, a property ascribed to their ability to upregulate interferon-stimulated genes. Due to the sequestered niche occupied by Toxoplasma gondii, the host has elaborated intricate ways to target the parasite within its vacuole. One such mechanism is the recognition by a noncanonical autophagy pathway that envelops the parasite-containing vacuole and stunts growth in human cells. Remarkably, autophagy-dependent growth restriction requires interferon-γ, yet none of the classical components of autophagy are induced by interferon. Our studies draw a connection between these pathways by demonstrating that the antiviral protein ISG15, which is normally upregulated by interferons, links the autophagy-mediated control to ubiquitination of the vacuole. These findings suggest a similar link between interferon-γ signaling and autophagy that may underlie defense against other intracellular pathogens.


2008 ◽  
Vol 76 (10) ◽  
pp. 4703-4712 ◽  
Author(s):  
Eric D. Phelps ◽  
Kristin R. Sweeney ◽  
Ira J. Blader

ABSTRACT Toxoplasma gondii is a ubiquitous apicomplexan parasite that can cause severe disease in fetuses and immune-compromised patients. Rhoptries, micronemes, and dense granules, which are secretory organelles unique to Toxoplasma and other apicomplexan parasites, play critical roles in parasite growth and virulence. To understand how these organelles modulate infected host cells, we sought to identify host cell transcription factors triggered by their release. Early growth response 2 (EGR2) is a host cell transcription factor that is rapidly upregulated and activated in Toxoplasma-infected cells but not in cells infected with the closely related apicomplexan parasite Neospora caninum. EGR2 upregulation occurred only when live parasites were in direct contact with the host cell and not from exposure to cell extracts that contain dense granule or micronemal proteins. When microneme-mediated attachment was blocked by pretreating parasites with a calcium chelator, EGR2 expression was significantly reduced. In contrast, when host cells were infected with parasites in the presence of cytochalasin D, which allows rhoptry secretion but prevents parasite invasion, EGR2 was activated. Finally, we demonstrate that Toxoplasma activation of host p38 mitogen-activated protein kinase is necessary but not sufficient for EGR2 activation. Collectively, these data indicate that EGR2 is specifically upregulated by a parasite-derived secreted factor that is most likely a resident rhoptry protein.


Micron ◽  
2008 ◽  
Vol 39 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Leandro Lemgruber ◽  
Wanderley De Souza ◽  
Rossiane Claudia Vommaro

1997 ◽  
Vol 110 (17) ◽  
pp. 2117-2128 ◽  
Author(s):  
A.P. Sinai ◽  
P. Webster ◽  
K.A. Joiner

The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.


Sign in / Sign up

Export Citation Format

Share Document