scholarly journals Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish

Development ◽  
2003 ◽  
Vol 130 (18) ◽  
pp. 4269-4278 ◽  
Author(s):  
M. Gajewski
2020 ◽  
Author(s):  
Gregory Roth ◽  
Georgios Misailidis ◽  
Charisios D. Tsiairis

AbstractMultiple natural and artificial oscillator systems achieve synchronisation when oscillators are coupled. The coupling mechanism, essentially the communication between oscillators, is often assumed to be continuous and bidirectional. However, the cells of the presomitic mesoderm synchronise their gene expression oscillations through Notch signalling, which is intermittent and directed from a ligand-presenting to a receptor-presenting cell. Motivated by this mode of communication we present a phase-gated and unidirectional coupling mechanism. We identify conditions under which it can successfully bring two or more oscillators to cycle in-phase. In the presomitic mesoderm we observed the oscillatory dynamics of two synchronizing cell populations and record one population halting its pace while the other keeps undisturbed, as would be predicted from our model. For the same system another important prediction, convergence to a specific range of phases upon synchronisation is also confirmed. Thus, the proposed mechanism accurately describes the coordinated oscillations of the presomitic mesoderm cells and provides an alternative framework for deciphering synchronisation.


2000 ◽  
Vol 14 (13) ◽  
pp. 1678-1690 ◽  
Author(s):  
Scott A. Holley ◽  
Robert Geisler ◽  
Christiane Nüsslein-Volhard

Somitogenesis has been linked both to a molecular clock that controls the oscillation of gene expression in the presomitic mesoderm (PSM) and to Notch pathway signaling. The oscillator, or clock, is thought to create a prepattern of stripes of gene expression that regulates the activity of the Notch pathway that subsequently directs somite border formation. Here, we report that the zebrafish gene after eight (aei) that is required for both somitogenesis and neurogenesis encodes the Notch ligand DeltaD. Additional analysis revealed that stripes of her1 expression oscillate within the PSM and that aei/DeltaDsignaling is required for this oscillation.aei/DeltaD expression does not oscillate, indicating that the activity of the Notch pathway upstream ofher1 may function within the oscillator itself. Moreover, we found that her1 stripes are expressed in the anlage of consecutive somites, indicating that its expression pattern is not pair-rule. Analysis of her1 expression inaei/DeltaD, fused somites (fss), and aei;fss embryos uncovered a wave-front activity that is capable of continually inducing her1 expression de novo in the anterior PSM in the absence of the oscillation of her1. The wave-front activity, in reference to the clock and wave-front model, is defined as such because it interacts with the oscillator-derived pattern in the anterior PSM and is required for somite morphogenesis. This wave-front activity is blocked in embryos mutant for fssbut not aei/DeltaD. Thus, our analysis indicates that the smooth sequence of formation, refinement, and fading ofher1 stripes in the PSM is governed by two separate activities.


Development ◽  
2002 ◽  
Vol 129 (5) ◽  
pp. 1175-1183 ◽  
Author(s):  
Scott A. Holley ◽  
Dörthe Jülich ◽  
Gerd-Jörg Rauch ◽  
Robert Geisler ◽  
Christiane Nüsslein-Volhard

Somite formation is thought to be regulated by an unknown oscillator mechanism that causes the cells of the presomitic mesoderm to activate and then repress the transcription of specific genes in a cyclical fashion. These oscillations create stripes/waves of gene expression that repeatedly pass through the presomitic mesoderm in a posterior-to-anterior direction. In both the mouse and the zebrafish, it has been shown that the notch pathway is required to create the stripes/waves of gene expression. However, it is not clear if the notch pathway comprises part of the oscillator mechanism or if the notch pathway simply coordinates the activity of the oscillator among neighboring cells. In the zebrafish, oscillations in the expression of a hairy-related transcription factor, her1 and the notch ligand deltaC precede somite formation. Our study focuses on how the oscillations in the expression of these two genes is affected in the mutants aei/deltaD and des/notch1, in ‘morpholino knockdowns’ of deltaC and her1 and in double ‘mutant’ combinations. This analysis indicates that these oscillations in gene expression are created by a genetic circuit comprised of the notch pathway and the notch target gene her1. We also show that a later function of the notch pathway can create a segmental pattern even in the absence of prior oscillations in her1 and deltaC expression. Supplementary data available at http://www.eb.tuebingen.mpg.de/papers/holley_dev_2002.html


2019 ◽  
Vol 16 (160) ◽  
pp. 20190436 ◽  
Author(s):  
Joseph W. Baron ◽  
Tobias Galla

Using a stochastic individual-based modelling approach, we examine the role that Delta-Notch signalling plays in the regulation of a robust and reliable somite segmentation clock. We find that not only can Delta-Notch signalling synchronize noisy cycles of gene expression in adjacent cells in the presomitic mesoderm (as is known), but it can also amplify and increase the coherence of these cycles. We examine some of the shortcomings of deterministic approaches to modelling these cycles and demonstrate how intrinsic noise can play an active role in promoting sustained oscillations, giving rise to noise-induced quasi-cycles. Finally, we explore how translational/transcriptional delays can result in the cycles in neighbouring cells oscillating in anti-phase and we study how this effect relates to the propagation of noise-induced stochastic waves.


2018 ◽  
Vol 152 ◽  
pp. 21-31 ◽  
Author(s):  
Hirofumi Kinoshita ◽  
Nanae Ohgane ◽  
Yuuri Fujino ◽  
Taijiro Yabe ◽  
Hiroki Ovara ◽  
...  

2021 ◽  
Author(s):  
Timothy Fulton ◽  
Seongwon Hwang ◽  
Yuxuan Wang ◽  
Lewis Thomson ◽  
Bethan Clark ◽  
...  

Pattern formation in development has been principally studied in tissues that are not undergoing extensive cellular rearrangement. However, in most developmental contexts, gene expression domains emerge as cells re-arrange their spatial positions within the tissue, providing an additional, and seldom explored, level of complexity to the process of pattern formation in vivo. To investigate this issue, we addressed the regulation of TBox expression in the presomitic mesoderm (PSM) as this tissue develops in zebrafish embryos. Here, cells must differentiate in a manner that leads to well-defined spatial gene expression domains along the tissue while undergoing rapid movements to generate axial length. We find that in vivo, mesoderm progenitors undergo TBox differentiation over a broad range of time scales while in vitro their differentiation is simultaneous. By reverse-engineering a gene regulatory network (GRN) to recapitulate TBox gene expression, we were able to predict the population-level differentiation dynamics observed in culture, but not in vivo. In order to address this discrepancy in differentiation dynamics we developed a ‘Live Modelling’ framework that allowed us to simulate the GRN on 3D tracking data generated from large-scale time-lapse imaging datasets of the developing PSM. Once the network was simulated on a realistic representation of the cells’ morphogenetic context, the model was able to recapitulate the range of differentiation time scales observed in vivo, and revealed that these were necessary for TBox gene expression patterns to emerge correctly at the level of the tissue. This work thus highlights a previously unappreciated role for cell movement as a driver of pattern formation in development.


Sign in / Sign up

Export Citation Format

Share Document