An Analysis of the Postgastrula Differentiation of the Hypomere

Development ◽  
1962 ◽  
Vol 10 (3) ◽  
pp. 293-314
Author(s):  
Cyril V. Finnegan

Following its involution around the lateral lips of the blastopore, the potential hypomere (lateral plate mesoderm) of Urodeles undergoes a dorsal convergence, along with other portions of the mesoderm mantle and then, during neurulation, initiates an independent ventrad migration (Nieuwkoop, 1947). As the hypomere migrates ventrally, it becomes further removed from the influences shown by Yamada (1950) to emanate from the mid-dorsal axial system and its deep layer is in contact with a tissue (endoderm) which seems to be influential in the differentiation of this mesoderm (Bacon, 1945; Jacobson, 1960; Nieuwkoop, 1947, 1950; Finnegan, 1953, 1955, 1961a, 1961b). A further understanding of the postgastrula development of the trunk hypomere seemed to require information of the possible restriction, in time, of the competence of this mesoderm or, alternatively, its degree of self-differentiation within an embryonic system for in vitro observations may indicate histogenetic potencies unrelated to normal development (Finnegan, 1961a, 1961b).

Development ◽  
1980 ◽  
Vol 56 (1) ◽  
pp. 41-58
Author(s):  
Ruth Bellairs ◽  
P. A. Portch ◽  
E. J. Sanders

Tissue culture, time-lapse cinematographic and electron microscopic techniques have been used to study the properties of chick mesoderm at several stages of differentiation. Lateral plate, unsegmented mesoderm (segmental plate), and newly formed somites were dissected from stage-12 embryos, whilst dermo-myotomes and sclerotomes were dissected from stage-18 embryos. Each type of mesoderm was found to exhibit a characteristic pattern of behaviour. The explants from the unsegmented mesoderm, from the newly formed somites and from the older embryos could be placed in a developmental sequence; with increasing differentiation they settled and spread on the substrate more readily, whether explanted as pieces of tissue or as individual cells, and it was concluded that this implied an increased adhesion to the substrate. Similarly, with increasing differentiation, the cells segmented at a faster rate. No significant differences could be discerned in the internal structure of the different types of cells, although differences in the general shape were apparent. The lateral plate mesoderm cells, which bear some resemblances to the unsegmented mesoderm cells in the embryo, also show some morphological resemblances to them in vitro. However, the lateral plate cells had a much greater success in attaching to glass or plastic substrates. They were also found to have the highest speed of locomotion of all the tissues studied, whereas the unsegmented had the lowest. It is concluded therefore, that although cells may look similar to one another morphologically, their behaviour may differ greatly, probably because they are already partially determined.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Jie Tan ◽  
Jacques P. Guyette ◽  
Kenji Miki ◽  
Ling Xiao ◽  
Gurbani Kaur ◽  
...  

AbstractEpicardial formation is necessary for normal myocardial morphogenesis. Here, we show that differentiating hiPSC-derived lateral plate mesoderm with BMP4, RA and VEGF (BVR) can generate a premature form of epicardial cells (termed pre-epicardial cells, PECs) expressing WT1, TBX18, SEMA3D, and SCX within 7 days. BVR stimulation after Wnt inhibition of LPM demonstrates co-differentiation and spatial organization of PECs and cardiomyocytes (CMs) in a single 2D culture. Co-culture consolidates CMs into dense aggregates, which then form a connected beating syncytium with enhanced contractility and calcium handling; while PECs become more mature with significant upregulation of UPK1B, ITGA4, and ALDH1A2 expressions. Our study also demonstrates that PECs secrete IGF2 and stimulate CM proliferation in co-culture. Three-dimensional PEC-CM spheroid co-cultures form outer smooth muscle cell layers on cardiac micro-tissues with organized internal luminal structures. These characteristics suggest PECs could play a key role in enhancing tissue organization within engineered cardiac constructs in vitro.


1938 ◽  
Vol 15 (3) ◽  
pp. 371-376 ◽  
Author(s):  
C. H. WADDINGTON

1. The pronephros opposite any given somite in the chick is probably determined just before the early neural plate stage at that level, and thereafter develops independently of the somite or lateral plate mesoderm. 2. The Wolffian duct, which is first formed by the union of the pronephric tubules, grows backwards by the multiplication of its own cells. If this elongation is checked by a transverse cut made posterior to the end of the duct, the duct does not appear behind the cut. 3. In the absence of the Wolffian duct, the mesonephros is not properly developed, appearing only as very small patches of tissue with no lumen. The Wolffian duct may therefore be said to induce the mesonephros, which, however, has a feeble power of self-differentiation as a double assurance. 4. This provides a confirmation of previous suggestions that an organ which is vestigial in the sense that it has lost its physiological function may be retained in ontogeny because it still fulfils the morphogenetic function of providing a stimulus essential for the development of other, physiologically more important, structures.


Development ◽  
1986 ◽  
Vol 97 (1) ◽  
pp. 141-168
Author(s):  
R. P. Tucker ◽  
C. A. Erickson

Neural crest-derived pigment cells form species-specific patterns of pigmentation in amphibian embryos. We have characterized the appearance and changes in pigment cell distribution in the embryos of the California newt, Taricha torosa. Black melanophores first appear scattered over the surface of the somites intermingled with yellow xanthophores in stage 34/35 embryos. The melanophores then migrate either dorsally to form a dorsal stripe at the apex of the somites or ventrally along the intersomitic furrows to form a midbody stripe at the somite—lateral plate mesoderm border. Xanthophores remain between the two melanophore stripes and are also found in the dorsal fin and head. The formation of the dorsal stripe coincides with a change in melanophore tissue affinity from the surface of the somites to the subectodermal extracellular matrix (ECM). The latter substratum is the location of the cue used to organize the dorsal stripe. In addition, melanophores become elongate and highly arborized, which would allow them to extend to the region where the dorsal stripe forms. In contrast, xanthophores do not form long processes in vitro. This suggests that the ability of melanophores but not xanthophores to search for a cue at the apex of the somites may account in part for the segregation of these cells types. Melanophores and xanthophores are trapped to form the midbody stripe by the pronephric duct, which is located just beneath the ectoderm at the bases of the intersomitic furrows. Ablation of the duct prevents formation of the midbody stripe, although melanophores and xanthophores still fail to migrate ventrally over the lateral plate mesoderm. Melanophores grafted to the ventral midline fail to leave the confines of the donor tissue. This suggests that a factor in the lateral plate mesoderm in addition to the pronephric duct is inhibiting further ventral migration. There is no gross morphological difference in the organization of the subectodermal ECM dorsal and ventral to the pronephric duct as revealed by alcian blue, ruthenium red and staining with antibodies to fibronectin. We also conclude that the directed dispersal of the neural crest into the space between the somites and ectoderm is due to contact inhibition of cell movement, since T. torosa neural crest cells demonstrate contact inhibition in vitro and there are enough cells in the lateral migratory spaces to make contact events likely during dispersal.


2018 ◽  
Vol 10 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Charles Yoon ◽  
Hannah Song ◽  
Ting Yin ◽  
Damaris Bausch-Fluck ◽  
Andreas P. Frei ◽  
...  

In a previous communication (Strangeways and Fell, 1926) it was shown that if the undifferentiated limb-bud of the embryonic Fowl was cultivated in vitro , it underwent a considerable amount of progressive development. This capacity for independent development in vitro possessed by an isolated organ has been further investigated, and for these later experiments the writers have employed the early embryonic eye, a structure endowed with more complex potentialities than the limb-bud. As a result of these experiments it was found that the eyes of young Fowl embryos possess, in a remarkable degree, the faculty for self-differentiation in vitro and for “organotypic” growth as defined by Maximow (1925). The previous work on organotypic growth in vitro has already been briefly outlined in the writers’ earlier paper and need not be discussed here. The expenses connected with the experiments described in this communication were met by the Medical Research Council, to whom the writers desire to express their thanks.


PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e42228 ◽  
Author(s):  
Diana Eng ◽  
Hsiao-Yen Ma ◽  
Jun Xu ◽  
Hung-Ping Shih ◽  
Michael K. Gross ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document