Posterior apical ectodermal ridge removal in the chick wing bud triggers a series of events resulting in defective anterior pattern formation

Development ◽  
1987 ◽  
Vol 101 (3) ◽  
pp. 501-515 ◽  
Author(s):  
W.L. Todt ◽  
J.F. Fallon

The ability of the anterior apical ectodermal ridge to promote outgrowth in the chick wing bud when disconnected from posterior apical ridge was examined by rotating the posterior portion of the stage-19/20 to stage-21 wing bud around its anteroposterior axis. This permitted contact between the anterior and posterior mesoderm, without removing wing bud tissue. In a small but significant number of cases (10/54), anterior structures (digit 2) formed spatially isolated from posterior structures (digits 3 and 4). Thus, continuity with posterior ridge is not a prerequisite for anterior-ridge function in the wing bud. Nevertheless, posterior-ridge removal does result in anterior limb truncation. To investigate events leading to anterior truncation, we examined cell death patterns in the wing bud following posterior-ridge removal. We observed an abnormal area of necrosis along the posterior border of the wing bud at 6–12 h following posterior-ridge removal. This was followed by necrosis in the distal, anterior mesoderm at 48 h postoperatively and subsequent anterior truncation. Clearly, healthy posterior limb bud mesoderm is needed for anterior limb bud survival and development. We propose that anterior truncation is the direct result of anterior mesodermal cell death and that this may not be related to positional specification of anterior cells. In our view, cell death of anterior mesoderm, after posterior mesoderm removal, should not be used as evidence for a role in position specification by the polarizing zone during the limb bud stages of development. We suggest that the posterior mesoderm that maintains the anterior mesoderm need not be restricted to the mapped polarizing zone, but is more extensively distributed in the limb bud.

Development ◽  
1977 ◽  
Vol 40 (1) ◽  
pp. 1-21
Author(s):  
Dennis Summerbell

Removal of the apical ectodermal ridge causes a reduction in the rate of outgrowth of the wing-bud and the loss of distal parts. More specifically it causes a short-term increase in cell density and cell death and a decrease in the rate of cell proliferation. The evidence supports the hypothesis of density-dependent control of cell division and suggests that there may also be a mechanism regulating skeletal length at the time of differentiation. An informal model is presented to explain the observations.


Development ◽  
1987 ◽  
Vol 99 (1) ◽  
pp. 99-108
Author(s):  
D.J. Wilson ◽  
J.R. Hinchliffe

Removal of the posterior half of the chick wing bud between stages 17–22 results in failure of the anterior distal tissue to survive and differentiate. This observation has been interpreted in terms of a requirement by the anterior half of a factor supplied by the posterior half of the limb containing the zone of polarizing activity (ZPA). This relationship has been tested by grafting ZPA tissue to the posterior surface of the anterior half after posterior half removal. Grafts made proximally on the cut surface did not significantly improve survival and development, nor did the ZPA prevent the expansion of the cell death in the ANZ beyond its normal boundaries into the distal mesenchyme. However, when grafted distally the ZPA inhibited cell death in the apical mesenchyme and caused the anterior mesenchyme to change its normal prospective fate (radius and digit 2). In all these cases, in addition to digit 2, digit 3 and frequently also digit 4 differentiated. The anterior half went on to develop a full set of digits and zeugopod parts in almost 50% of cases, although no skeleton resulting from this regulation of the anterior half had totally size regulated. These results demonstrate a developmental ‘rescue’ effect by the ZPA, and further support the view that the ZPA has a central and unique function in normal limb bud development, controlling survival and differentiation of the mesenchyme along the anteroposterior axis.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 199-206 ◽  
Author(s):  
A. Vogel ◽  
C. Tickle

The polarizing region is a major signalling tissue involved in patterning the tissues of the vertebrate limb. The polarizing region is located at the posterior margin of the limb bud and can be recognized by its ability to induce additional digits when grafted to the anterior margin of a chick limb bud. The signal from the polarizing region operates at the tip of the bud in the progress zone, a zone of undifferentiated mesenchymal cells, maintained by interactions with the apical ectodermal ridge. A number of observations have pointed to a link between the apical ectodermal ridge and signalling by the polarizing region. To test this possibility, we removed the posterior apical ectodermal ridge of chick wing buds and assayed posterior mesenchyme for polarizing activity. When the apical ectodermal ridge is removed, there is a marked decrease in polarizing activity of posterior cells. The posterior apical ectodermal ridge is known to express FGF-4 and we show that the decrease in polarizing activity of posterior cells of wing buds that normally follows ridge removal can be prevented by implanting a FGF-4-soaked bead. Furthermore, we show that both ectoderm and FGF-4 maintain polarizing activity of limb bud cells in culture.


Development ◽  
1984 ◽  
Vol 80 (1) ◽  
pp. 105-125
Author(s):  
Madeleine Gumpel-Pinot ◽  
D. A. Ede ◽  
O. P. Flint

Fragments of quail wing bud containing myogenic cells of somitic origin and fragments of quail sphlanchopleural tissue were introduced into the interior of the wing bud of fowl embryo hosts. No movement of graft into host tissue occurred in the control, but myogenic cells from the quail wing bud fragments underwent long migrations in an apical direction to become incorporated in the developing musculature of the host. When the apical ectodermal ridge (AER), together with some subridge mesenchyme, was removed at the time of grafting, no such cell migration occurred. The capacity of grafted myogenic cells to migrate in the presence of AER persists to H.H. stage 25, when myogenesis has begun, but premyogenic cells in the somites, which normally migrate out into the early limb bud, do not migrate when somite fragments are grafted into the wing bud. Coelomic grafts of apical and proximal wing fragments showed that apical sections of quail wing buds become invaded by myogenic cells of the host, but grafts from proximal wing bud regions do not.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1385-1394 ◽  
Author(s):  
J.A. Helms ◽  
C.H. Kim ◽  
G. Eichele ◽  
C. Thaller

In the chick limb bud, the zone of polarizing activity controls limb patterning along the anteroposterior and proximodistal axes. Since retinoic acid can induce ectopic polarizing activity, we examined whether this molecule plays a role in the establishment of the endogenous zone of polarizing activity. Grafts of wing bud mesenchyme treated with physiologic doses of retinoic acid had weak polarizing activity but inclusion of a retinoic acid-exposed apical ectodermal ridge or of prospective wing bud ectoderm evoked strong polarizing activity. Likewise, polarizing activity of prospective wing mesenchyme was markedly enhanced by co-grafting either a retinoic acid-exposed apical ectodermal ridge or ectoderm from the wing region. This equivalence of ectoderm-mesenchyme interactions required for the establishment of polarizing activity in retinoic acid-treated wing buds and in prospective wing tissue, suggests a role of retinoic acid in the establishment of the zone of polarizing activity. We found that prospective wing bud tissue is a high-point of retinoic acid synthesis. Furthermore, retinoid receptor-specific antagonists blocked limb morphogenesis and down-regulated a polarizing signal, sonic hedgehog. Limb agenesis was reversed when antagonist-exposed wing buds were treated with retinoic acid. Our results demonstrate a role of retinoic acid in the establishment of the endogenous zone of polarizing activity.


Development ◽  
1979 ◽  
Vol 50 (1) ◽  
pp. 75-97
Author(s):  
Robert A. Kosher ◽  
Mary P. Savage ◽  
Sai-Chung Chan

It has been suggested that one of the major functions of the apical ectodermal ridge (AER) of the embryonic chick limb-bud is to maintain mesenchymal cells directly subjacent to it (i.e. cells extending 00·4–00·5 mm from the AER) in a labile, undifferentiated condition. We have attempted to directly test this hypothesis by subjecting the undifferentiated subridgemesoderm of stage-25 embryonic chick wing-buds to organ culture in the presence and absence of the AER and the ectoderm that normally surrounds the mesoderm dorsally and ventrally. During the period of culture, control explants comprised of the subridge mesoderm capped by the AER and surrounded by the dorsal/ventral ectoderm undergo progressivemorphogenesis characterized by polarized proximal to distal outgrowth and changes in the contour of the developing explant, and ultimately form a structure grossly resembling a normal distal wing-bud tip. In contrast, explants from which the AER and dorsal/ventral ectoderm have been removed (minus ectoderm explants) or from which just the AER has been removed (minus AER explants) form compact, rounded masses exhibiting no signs of morphogenesis. During the polarized proximal to distal outgrowth control explants undergo during the first 3 days of culture, as cells of the explant become located greater than 0·4– 0·5 mm from the AER, they concomitantly undergo a sequence of changes indicative of their differentiation into cartilage. However, those cells which remain 0·4–0·5 mm from the AER during this period retain the characteristics of non-specialized mesenchymal cells. In marked contrast to control explants, virtually all of the cells of minus ectoderm explants initiate chondrogenic differentiation during the first day of culture. Cells comprising the central core of minus AER explants also initiate chondrogenic differentiation during the first day of culture, but in contrast to minus ectoderm explants, non-chondrogenic tissue types form along the periphery of the explants subjacent to the dorsal/ventral ectoderm. These results indicate that the AER maintains cells directly subjacent to it in a labile, undifferentiated condition, and that when mesenchymal cells are freed from the AER's influence either artificially or as a result of normal polarized outgrowth, they are freed to commence cytodifferentiation. The results further suggest that the dorsal/ventral ectoderm may have an influence on the differentiation of the mesenchymal cells directly subjacent to it, once the cells have been removed from the influence of the AER.


Development ◽  
1979 ◽  
Vol 53 (1) ◽  
pp. 67-73
Author(s):  
Jeffrey A. Maccabe ◽  
Brenda W. Parker

When polarizing mesoderm from the posterior border of the 4-day chick limb bud is placed adjacent to anterior limb mesoderm and ectodermal ridge, the anterior ridge thickens and mesodermal outgrowth ensues, resulting in supernumerary limb structures. This apposition of anterior and posterior limb tissues can be accomplished by cutting off the apical one third of the limb bud and reimplanting it on the stump with its anteroposterior axis reversed. The preaxial response to polarizing activity can be obtained after only 12–18 h in the reoriented position. Reversed apical mesoderm develops supernumerary digits when combined with untreated ectoderm. The reciprocal combination, reversed ectoderm and untreated mesoderm, fails to develop supernumerary structures. We have interpreted this as evidence that, in inducing supernumerary limb structures, polarizing activity actsonly on the mesoderm.


Development ◽  
1997 ◽  
Vol 124 (22) ◽  
pp. 4547-4556 ◽  
Author(s):  
M. Altabef ◽  
J.D. Clarke ◽  
C. Tickle

We wish to understand how limbs are positioned with respect to the dorso-ventral axis of the body in vertebrate embryos, and how different regions of limb bud ectoderm, i.e. dorsal ectoderm, apical ridge and ventral ectoderm, originate. Signals from dorsal and ventral ectoderm control dorso-ventral patterning while the apical ectodermal ridge (AER) controls bud outgrowth and patterning along the proximo-distal axis. We show, using cell-fate tracers, the existence of two distinct ectodermal compartments, dorsal versus ventral, in both presumptive limb and flank of early chick embryos. This organisation of limb ectoderm is the first direct evidence, in vertebrates, of compartments in non-neural ectoderm. Since the apical ridge appears to be confined to this compartment boundary, this positions the limb. The mesoderm, unlike the ectoderm, does not contain two separate dorsal and ventral cell lineages, suggesting that dorsal and ventral ectoderm compartments may be important to ensure appropriate control of mesodermal cell fate. Surprisingly, we also show that cells which form the apical ridge are initially scattered in a wide region of early ectoderm and that both dorsal and ventral ectoderm cells contribute to the apical ridge, intermingling to some extent within it.


Development ◽  
1984 ◽  
Vol 80 (1) ◽  
pp. 21-41
Author(s):  
John F. Fallon ◽  
William L. Todt

Histological examination of the stage-18 to stage-23 chick wing bud apex revealed the following. Initially, the wing bud was covered by a cuboidal to columnar epithelium with an overlying periderm. Thickening of the apical ectoderm was not obvious until late stage 18 (36 pairs of somites), after the appearance of the wing bud. At late stage 18, cells of the inner layer of ectoderm had elongated slightly along an axis perpendicular to the epithelial-mesenchymal interface. Well-defined apical ectodermal ridge morphology, i.e., pseudostratified columnar epithelium with an overlying periderm, was not apparent until stage 20. Subsequently the ridge lengthened along the anteroposterior perimeter of the wingbud. We demonstrated histologically that the apical ectodermal ridge of the wing bud was asymmetric with respect to the anteroposterior axis, in that there was more ridge associated with posterior mesoderm. Other observations include the spatial and temporal location of a groove in the base of the thickest part of the ridge. The groove can be correlated with the specification of distal wing elements. The groove was first seen at stage 20 and became more prominent through stage 23. An anteroposterior progression of ectodermal cell death was also observed. This began at late stage 18 and continued through each of the stages examined.


Sign in / Sign up

Export Citation Format

Share Document