BHK-21-derived cell lines that produce basic fibroblast growth factor, but not parental BHK-21 cells, initiate neuronal differentiation of neural crest progenitors

Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 1059-1069 ◽  
Author(s):  
G. Brill ◽  
N. Vaisman ◽  
G. Neufeld ◽  
C. Kalcheim

We present evidence that basic fibroblast growth factor (bFGF)-producing cells stimulate primary differentiation of neurons from neural crest progenitors. Baby hamster kidney (BHK-21) cells were stably cotransfected with plasmid pSV2/neo, which contains the gene conferring resistance to the neomycin analog G418 and expression vectors containing the human bFGF cDNA. Various clones, which differed in their bFGF production levels, were isolated. Homogeneous neural crest cells were cultured on monolayers of bFGF-producing, BHK-21-derived cell lines. While the parental BHK-21 cells, which do not produce detectable bFGF, had poor neurogenic ability, the various bFGF-producing clones promoted a 1.5- to 4-fold increase in neuronal cell number compared to the parental cells. This increase was correlated with the levels of bFGF produced by the different transfected clones, which ranged between 2.3 and 140 ng/mg protein. In contrast, no stimulation of neuronal differentiation was observed when neural crest cells were grown on monolayers of parental BHK cells transfected with plasmid pSV2/neo alone, or on a parental BHK-derived clone, which secretes high amounts of recombinant vascular endothelial growth factor (VEGF). Furthermore, the neuron-promoting ability of bFGF-producing cells could be mimicked by addition of exogenous bFGF to neural crest cells grown on the parental BHK line. A similar treatment of neural crest cells grown on laminin substrata, instead of BHK cells, resulted in increased survival of non-neuronal cells, but not of neurons (see also Kalcheim, C. 1989, Dev. Biol. 134, 1–10). Taken together, these results suggest that bFGF stimulates neuronal differentiation of neural crest cells by a cell-mediated signalling mechanism.

2002 ◽  
Vol 224 (2) ◽  
pp. 210-221 ◽  
Author(s):  
Anita Petiot ◽  
Patrizia Ferretti ◽  
Andrew J. Copp ◽  
Chi-Tsung Joseph Chan

1993 ◽  
Vol 106 (1) ◽  
pp. 135-143
Author(s):  
Y. Ke ◽  
D.G. Fernig ◽  
M.C. Wilkinson ◽  
J.H. Winstanley ◽  
J.A. Smith ◽  
...  

mRNA for basic Fibroblast Growth Factor (bFGF) was expressed in a series of SV40-transformed human mammary cell lines as molecules of 7.1, 3.6, 2.0 and 1.2 kb. This expression was much weaker in those lines of epithelial morphology than in myoepithelial-like cell lines derived from them. It was confirmed, using northern hybridization to single-stranded RNA probes, that the multiple mRNAs were transcribed from the coding strand for bFGF. bFGF activity was detected in extracts of the cells and the relative amounts of activity corresponded in general to the amounts of mRNA found. Similar results were obtained from spontaneously transformed cell lines derived from a human benign breast lesion. The presence of bFGF protein in the extracts was confirmed by western blotting, which showed a band of 18–19 kDa, migrating in the same position as authentic bFGF; in addition, the myoepithelial-like cells showed prominent bands of bFGF at 24 and 26 kDa. No FGF receptor was detectable by the binding of 125I-bFGF to the SV40-transformed cell lines or to the epithelial cell lines from the benign breast lesion, but both high- and low-affinity receptors were found on myoepithelial-like cells derived from the latter. The results indicate that differentiation to the human myoepithelial-like phenotype in culture is associated with the enhanced expression of bFGF, and it is suggested that bFGF, immunocytochemically detected in the basement membrane of the human breast, may arise, at least in part, from the myoepithelial cells of the mammary parenchyma.


Sign in / Sign up

Export Citation Format

Share Document