Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system
The first step in generating cellular diversity in the Drosophila central nervous system is the formation of a segmentally reiterated array of neural precursor cells, called neuroblasts. Subsequently, each neuroblast goes through an invariant cell lineage to generate neurons and/or glia. Using molecular lineage markers, I show that (1) each neuroblast forms at a stereotyped time and position; (2) the neuroblast pattern is indistinguishable between thoracic and abdominal segments; (3) the development of individual neuroblasts can be followed throughout early neurogenesis; (4) gene expression in a neuroblast can be reproducibly modulated during its cell lineage; (5) identified ganglion mother cells form at stereotyped times and positions; and (6) the cell lineage of four well-characterized neurons can be traced back to two identified neuroblasts. These results set the stage for investigating neuroblast specification and the mechanisms controlling neuroblast cell lineages.