A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage

Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 525-533 ◽  
Author(s):  
N.P. Pringle ◽  
W.D. Richardson

During rat embryogenesis, PDGF alpha receptor (PDGF-alpha R) mRNA is expressed in the ventral half of the spinal cord in two longitudinal columns, one each side of the central canal. Initially, these columns are only two cells wide but the cells subsequently appear to proliferate and disseminate throughout the spinal cord. Our previous studies of PDGF-alpha R expression in the developing CNS suggested that PDGF-alpha R may be a useful marker of the oligodendrocyte lineage in situ. The data presented here complement those studies and lead us to propose that the earliest oligodendrocyte precursors in the spinal cord originate in a very restricted region of the ventricular zone during a brief window of time around embryonic day 14 (E14). In the embryonic brain, migrating PDGF-alpha R+ cells appear to originate in a localized germinal zone in the ventral diencephalon (beneath the foramen of Monro). Our data demonstrate that gene expression and cell fate can be regulated with exquisite spatial resolution along the dorsoventral axis of the mammalian neural tube.

Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 2013-2022 ◽  
Author(s):  
P.E. Phelps ◽  
R.P. Barber ◽  
J.E. Vaughn

During development, many migrating neurons are thought to guide on radially oriented glia to reach their adult locations. However, members of the ‘U-shaped’ group of cholinergic interneurons in embryonic rat spinal cord appeared to migrate in a direction perpendicular to the orientation of radial glia. This ‘U-shaped’ group of cells was located around the ventral ventricular zone on embryonic day 16 and, during the next two days, the constituent cells dispersed into the dorsal horn or around the central canal. During this period, these cells could be identified with either ChAT immunocytochemistry or NADPH-diaphorase histochemistry and they appeared to be aligned along commissural axons, suggesting that such processes, rather than radial glia, might guide their migration. An organotypic spinal cord slice preparation was developed and utilized for three different experimental approaches to studying this migration. In the first experiments, slices of embryonic day 16 cervical spinal cord were cultured for one, two or three days, and a relatively histotypic dorsal migration of ‘U-derived’ cells could be inferred from these sequential cultures. A second set of experiments focused on the direct observation of dorsally directed migration in living spinal cord cultures. Embryonic day 16 slices were injected with a lipophilic fluorescent label near the dorsal boundary of the ‘U-shaped’ cell group and the dorsal movement of labeled cells was observed using confocal microscopy. These experiments confirmed the dorsal migratory pattern inferred from sequentially fixed specimens. A third experimental approach was to transect embryonic day 16 slice cultures microsurgically in order to disturb the migration of ‘U-derived’ cells. Depending upon the amount of ventral spinal cord removed, the source of cells was excised and/or their guidance pathway was perturbed. The number and position of ‘U-derived’ cells varied with the amount of ventral cord excised. If more than 400 microns was removed, no ‘U-derived’ diaphorase-labeled cells were present, whereas if only 200–300 microns was removed, the cultures contained such cells. However, in this instance, many of the ‘U-derived’ neurons did not move as far dorsally, nor did they display their characteristic dorsoventral orientation. When results from these three experiments are taken together, they provide strong evidence that nonradial neuronal migration occurs in developing spinal cord and that the ‘U-derived’ neurons utilize such a migration to move from their ventral generation sites to their dorsal adult locations.


2018 ◽  
Vol 38 (1) ◽  
pp. 147-153
Author(s):  
Amanda O. Ferreira ◽  
Bruno G. Vasconcelos ◽  
Phelipe O. Favaron ◽  
Amilton C. Santos ◽  
Rafael M. Leandro ◽  
...  

ABSTRACT: Central nervous system (CNS) development researches are extremely important to the most common congenital disorders and organogenesis comprehension. However, few studies show the entire developmental process during the critical period. Present research can provide data to new researches related to normal development and abnormalities and changes that occur along the CNS organogenesis, especially nowadays with the need for preliminary studies in animal models, which could be used for experimental research on the influence of viruses, such as the influence of Zika virus on the development of the neural system and its correlation with microcephaly in human newborns. Then, present study describes CNS organogenesis in cattle according to microscopic and macroscopic aspects, identifying structures and correlating to gestational period. Fourteen embryos and nine bovine fetuses at different ages were collected and analyzed. All individuals were measured in order to detect the gestational period. Bovine embryo at 17 days age has its neural tube, cranial neuropore, caudal neuropore and somites developed. After 24 days of development, were observed in cranial part of neural tube five encephalic vesicles denominated: telencephalon, diencephalon, mesencephalon, metencephalon and myelencephalon. In addition, the caudal part of neural tube was identified with the primitive spinal cord. The primordial CNS differentiation occurred from 90 to 110 days. The five encephalic vesicles, primordial spinal cord and the cavities: third ventricule, mesencephalic aqueduct, fourth ventricle and central canal in spinal cord were observed. With 90 days, the main structures were identified: (1) cerebral hemispheres, corpus callosum and fornix, of the telencephalon; (2) interthalamic adhesion, thalamus, hypothalamus and epythalamus (glandula pinealis), of the diencephalon; (3) cerebral peduncles and quadruplets bodies, of the mesencephalon; (4) pons and cerebellum, of the metencephalon; (5) medulla oblongata or bulb, of the myelencephalon; and (6) spinal cord, of the primitive spinal cord. After 110 days of gestation, the five encephalic vesicles and its structures were completely developed. It was noted the presence of the spinal cord with the cervicothoracic and lumbossacral intumescences. In summary, the results describes the formation of the neural tube from the neural plate of the ectoderm, the encephalic vesicles derived from the neural tube and subsequent structural and cavities subdivisions, thus representing the complete embryology of the central nervous system.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1743-1754 ◽  
Author(s):  
K. Ono ◽  
R. Bansal ◽  
J. Payne ◽  
U. Rutishauser ◽  
R.H. Miller

Oligodendrocytes, the myelinating cells of the vertebrate CNS, originally develop from cells of the neuroepithelium. Recent studies suggest that spinal cord oligodendrocyte precursors are initially localized in the region of the ventral ventricular zone and subsequently disperse throughout the spinal cord. The characteristics of these early oligodendrocyte precursors and their subsequent migration has been difficult to assay directly in the rodent spinal cord due to a lack of appropriate reagents. In the developing chick spinal cord, we show that oligodendrocyte precursors can be specifically identified by labeling with O4 monoclonal antibody. In contrast to rodent oligodendrocyte precursors, which express O4 immunoreactivity only during the later stages of maturation, in the chick O4 immunoreactivity appears very early and its expression is retained through cellular maturation. In embryos older than stage 35, O4+ cells represent the most immature, self-renewing, cells of the chick spinal cord oligodendrocyte lineage. In the intact chick spinal cord, the earliest O4+ cells are located at the ventral ventricular zone where they actually contribute to the ventricular lining of the central canal. The subsequent migration of O4+ cells into the dorsal region of the spinal cord temporally correlates with the capacity of isolated dorsal spinal cord to generate oligodendrocytes in vitro. Biochemical analysis suggests O4 labels a POA-like antigen on the surface of chick spinal cord oligodendrocyte precursors. These studies provide direct evidence for the ventral ventricular origin of spinal cord oligodendrocytes, and suggest that this focal source of oligodendrocytes is a general characteristic of vertebrate development.


Open Biology ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 170139 ◽  
Author(s):  
Ana Ribeiro ◽  
Joana F. Monteiro ◽  
Ana C. Certal ◽  
Ana M. Cristovão ◽  
Leonor Saúde

Zebrafish are able to regenerate the spinal cord and recover motor and sensory functions upon severe injury, through the activation of cells located at the ependymal canal. Here, we show that cells surrounding the ependymal canal in the adult zebrafish spinal cord express Foxj1a. We demonstrate that ependymal cells express Foxj1a from their birth in the embryonic neural tube and that Foxj1a activity is required for the final positioning of the ependymal canal. We also show that in response to spinal cord injury, Foxj1a ependymal cells actively proliferate and contribute to the restoration of the spinal cord structure. Finally, this study reveals that Foxj1a expression in the injured spinal cord is regulated by regulatory elements activated during regeneration. These data establish Foxj1a as a pan-ependymal marker in development, homeostasis and regeneration and may help identify the signals that enable this progenitor population to replace lost cells after spinal cord injury.


1972 ◽  
Vol 36 (4) ◽  
pp. 416-424 ◽  
Author(s):  
Donald P. Becker ◽  
Jimmy A. Wilson ◽  
G. William Watson

✓ The central canal of the spinal cord was studied with canal occlusion alone, and in experimental (kaolin) hydrocephalus without and with central canal occlusion. Massive dilatation of the canal occurred with kaolin hydrocephalus. Syrinxes extending into the gray and white matter of the cord and communicating with the central canal developed in both the upper and lower spinal cord. The completely isolated central canal (occlusion at the obex and filum terminale) did not dilate, but remained patent. Canal occlusion at the obex and filum terminale completely protected the spinal cord from central canal dilatation or syrinxes in kaolin hydrocephalus. These findings suggest that the choroid plexus is responsible for producing neural tube dilatation in hydrocephalus. It also supports the concept that syringomyelia results from inadequate drainage of cerebrospinal fluid and increased pressure (or pulse pressure) in the spinal cord central canal.


PLoS Biology ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. e3000470 ◽  
Author(s):  
Christine M. Tait ◽  
Kavitha Chinnaiya ◽  
Elizabeth Manning ◽  
Mariyam Murtaza ◽  
John-Paul Ashton ◽  
...  
Keyword(s):  

2000 ◽  
Vol 15 (6) ◽  
pp. 510-521 ◽  
Author(s):  
W.Paul Farquhar-Smith ◽  
Michaela Egertová ◽  
Elizabeth J. Bradbury ◽  
Stephen B. McMahon ◽  
Andrew S.C. Rice ◽  
...  

1983 ◽  
Vol 220 (3) ◽  
pp. 321-335 ◽  
Author(s):  
Richard L. Nahin ◽  
Anne M. Madsen ◽  
Glenn J. Giesler

1991 ◽  
Vol 75 (6) ◽  
pp. 911-915 ◽  
Author(s):  
Thomas H. Milhorat ◽  
David E. Adler ◽  
Ian M. Heger ◽  
John I. Miller ◽  
Joanna R. Hollenberg-Sher

✓ The pathology of hematomyelia was examined in 35 rats following the stereotactic injection of 2 µl blood into the dorsal columns of the thoracic spinal cord. This experimental model produced a small ball-hemorrhage without associated neurological deficits or significant tissue injury. Histological sections of the whole spinal cord were studied at intervals ranging from 2 hours to 4 months after injection. In acute experiments (2 to 6 hours postinjection), blood was sometimes seen within the lumen of the central canal extending rostrally to the level of the fourth ventricle. Between 24 hours and 3 days, the parenchymal hematoma became consolidated and there was an intense proliferation of microglial cells at the perimeter of the lesion. The cells invaded the hematoma, infiltrated its core, and removed erythrocytes by phagocytosis. Rostral to the lesion, the lumen of the central canal was found to contain varying amounts of fibrin, proteinaceous material, and cellular debris for up to 15 days. These findings were much less prominent in the segments of the canal caudal to the lesion. Healing of the parenchymal hematoma was usually complete within 4 to 6 weeks except for residual hemosiderin-laden microglial cells and focal gliosis at the lesion site. It is concluded that the clearance of atraumatic hematomyelia probably involves two primary mechanisms: 1) phagocytosis of the focal hemorrhage by microglial cells; and 2) drainage of blood products in a rostral direction through the central canal of the spinal cord.


Sign in / Sign up

Export Citation Format

Share Document