Nonradial migration of interneurons can be experimentally altered in spinal cord slice cultures

Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 2013-2022 ◽  
Author(s):  
P.E. Phelps ◽  
R.P. Barber ◽  
J.E. Vaughn

During development, many migrating neurons are thought to guide on radially oriented glia to reach their adult locations. However, members of the ‘U-shaped’ group of cholinergic interneurons in embryonic rat spinal cord appeared to migrate in a direction perpendicular to the orientation of radial glia. This ‘U-shaped’ group of cells was located around the ventral ventricular zone on embryonic day 16 and, during the next two days, the constituent cells dispersed into the dorsal horn or around the central canal. During this period, these cells could be identified with either ChAT immunocytochemistry or NADPH-diaphorase histochemistry and they appeared to be aligned along commissural axons, suggesting that such processes, rather than radial glia, might guide their migration. An organotypic spinal cord slice preparation was developed and utilized for three different experimental approaches to studying this migration. In the first experiments, slices of embryonic day 16 cervical spinal cord were cultured for one, two or three days, and a relatively histotypic dorsal migration of ‘U-derived’ cells could be inferred from these sequential cultures. A second set of experiments focused on the direct observation of dorsally directed migration in living spinal cord cultures. Embryonic day 16 slices were injected with a lipophilic fluorescent label near the dorsal boundary of the ‘U-shaped’ cell group and the dorsal movement of labeled cells was observed using confocal microscopy. These experiments confirmed the dorsal migratory pattern inferred from sequentially fixed specimens. A third experimental approach was to transect embryonic day 16 slice cultures microsurgically in order to disturb the migration of ‘U-derived’ cells. Depending upon the amount of ventral spinal cord removed, the source of cells was excised and/or their guidance pathway was perturbed. The number and position of ‘U-derived’ cells varied with the amount of ventral cord excised. If more than 400 microns was removed, no ‘U-derived’ diaphorase-labeled cells were present, whereas if only 200–300 microns was removed, the cultures contained such cells. However, in this instance, many of the ‘U-derived’ neurons did not move as far dorsally, nor did they display their characteristic dorsoventral orientation. When results from these three experiments are taken together, they provide strong evidence that nonradial neuronal migration occurs in developing spinal cord and that the ‘U-derived’ neurons utilize such a migration to move from their ventral generation sites to their dorsal adult locations.

2009 ◽  
Vol 29 (6-7) ◽  
pp. 927-936 ◽  
Author(s):  
Juraj Ševc ◽  
Zuzana Daxnerová ◽  
Mária Miklošová

Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 525-533 ◽  
Author(s):  
N.P. Pringle ◽  
W.D. Richardson

During rat embryogenesis, PDGF alpha receptor (PDGF-alpha R) mRNA is expressed in the ventral half of the spinal cord in two longitudinal columns, one each side of the central canal. Initially, these columns are only two cells wide but the cells subsequently appear to proliferate and disseminate throughout the spinal cord. Our previous studies of PDGF-alpha R expression in the developing CNS suggested that PDGF-alpha R may be a useful marker of the oligodendrocyte lineage in situ. The data presented here complement those studies and lead us to propose that the earliest oligodendrocyte precursors in the spinal cord originate in a very restricted region of the ventricular zone during a brief window of time around embryonic day 14 (E14). In the embryonic brain, migrating PDGF-alpha R+ cells appear to originate in a localized germinal zone in the ventral diencephalon (beneath the foramen of Monro). Our data demonstrate that gene expression and cell fate can be regulated with exquisite spatial resolution along the dorsoventral axis of the mammalian neural tube.


1972 ◽  
Vol 37 (5) ◽  
pp. 538-542 ◽  
Author(s):  
George J. Dohrmann

✓ Adult dogs were rendered hydrocephalic by the injection of kaolin into the cisterna magna. One group of dogs was sacrificed 1 month after kaolin administration, and ventriculojugular shunts were performed on the other group. Hydrocephalic dogs with shunts were sacrificed 1 day or 1 week after the shunting procedure. All dogs were perfused with formalin at physiological pressure, and the brain stem and cervical spinal cord were examined by light microscopy. Subarachnoid granulomata encompassed the superior cervical spinal cord and dependent surface of the brain stem. Rarefaction of the posterior white columns and clefts or cavities involving the gray matter posterior to the central canal and/or posterior white columns were present in the spinal cords of both hydrocephalic and shunted hydrocephalic dogs. Predominantly in the dogs with shunts, hemorrhages were noted in the spinal cord in association with the clefts or cavities. A mechanism of ischemia followed by reflow of blood is postulated to explain the hemorrhages in the spinal cords of hydrocephalic dogs with shunts.


2019 ◽  
Author(s):  
Christine Tait ◽  
Kavitha Chinnaiya ◽  
Mariyam Murtaza ◽  
John-Paul Ashton ◽  
Nicholas Furley ◽  
...  

AbstractIn the spinal cord, the adult central canal forms through a poorly-understood process termed dorsal collapse that involves attrition and remodelling of the pseudostratified dorsal ventricular layer. Here we show, in mouse, that dorsal ventricular layer cells adjacent to midline Nestin(+) radial glia downregulate the apical polarity proteins Crumbs2 (CRB2) and aPKC and delaminate in a step-wise manner; concomitantly, Nestin(+) radial glial end-feet ratchet down, to repeat this process. Nestin(+) radial glia secrete a factor that promotes cell delamination. This activity is mimicked by a secreted variant of CRB2 (CRB2S), which is specifically expressed by dorsal midline Nestin(+) radial glia. In cultured cells, CRB2S associated with apical membranes and decreased cell cohesion. Analysis of Crb2F/F/Nestin-Cre+/− mice further confirmed an essential role for CRB2 in dorsal collapse. We propose a model in which CRB2S promotes the progressive attrition of the ventricular layer without loss of overall integrity. This novel mechanism may operate more widely to promote orderly progenitor delamination.


2000 ◽  
Vol 93 (2) ◽  
pp. 326-329 ◽  
Author(s):  
Takaichi Suehiro ◽  
Takanori Inamura ◽  
Yoshihiro Natori ◽  
Masayuki Sasaki ◽  
Masashi Fukui

✓ The authors report the use of neuroendoscopic third ventriculostomy to treat successfully both hydrocephalus and syringomyelia associated with fourth ventricle outlet obstruction. A 27-year-old woman presented with dizziness, headache, and nausea. Magnetic resonance (MR) imaging demonstrated dilation of all ventricles, downward displacement of the third ventricular floor, obliteration of the retrocerebellar cerebrospinal fluid (CSF) space, funnellike enlargement of the entrance of the central canal in the fourth ventricle, and syringomyelia involving mainly the cervical spinal cord. Cine-MR imaging indicated patency of the aqueduct and an absent CSF flow signal in the area of the cisterna magna, which indicated obstruction of the outlets of the fourth ventricle. Although results of radioisotope cisternography indicated failure of CSF absorption, neuroendoscopic third ventriculostomy completely resolved all symptoms as well as the ventricular and spinal cord abnormalities evident on MR images. Neuroendoscopic third ventriculostomy is an important option for treating hydrocephalus in patients with fourth ventricle outlet obstruction.


2000 ◽  
Vol 8 (3) ◽  
pp. 1-13 ◽  
Author(s):  
Nancy J. Fischbein ◽  
William P. Dillon ◽  
Charles Cobbs ◽  
Philip R. Weinstein

Object Alteration of cerebrospinal fluid (CSF) flow has been proposed as an important mechanism leading to the development of syringomyelia. We hypothesize that a “presyrinx” condition due to potentially reversible alteration in normal CSF flow exists and that its appearance may be due to variations in the competence of the central canal of the spinal cord. Methods Five patients with clinical evidence of myelopathy, no history of spinal cord trauma, enlargement of the cervical spinal cord with T1 and T2 prolongation but no cavitation, evidence for altered or obstructed CSF flow, and no evidence of intramedullary tumor or a spinal vascular event underwent MR imaging before and after intervention that alleviated obstruction to CSF flow. Results Preoperatively, all patients demonstrated enlarged spinal cords and parenchymal T1 and T2 prolongation without cavitation. Results of magnetic resonance (MR) imaging examinations following intervention in all patients showed resolution of cord enlargement and normalization or improvement of cord signal abnormalities. In one patient with severe arachnoid adhesions who initially improved following decompression, late evolution into syringomyelia occurred in association with continued CSF obstruction. Conclusion Nontraumatic obstruction of the CSF pathways in the spine may result in spinal cord parenchymal T2 prolongation that is reversible following restoration of patency of CSF pathways. We refer to this MR appearance as the “presyrinx” state and stress the importance of timely intervention to limit progression to syringomyelia.


2022 ◽  
Vol 23 (2) ◽  
pp. 834
Author(s):  
Chigusa Shimizu-Okabe ◽  
Shiori Kobayashi ◽  
Jeongtae Kim ◽  
Yoshinori Kosaka ◽  
Masanobu Sunagawa ◽  
...  

Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine coreleasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play critical roles in regulating pain, locomotive movement, and respiratory rhythms. In this study, we first describe GABAergic and glycinergic transmission and inhibitory networks, consisting of three types of terminals in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with a specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated, and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many GABAergic neurons convert to a coreleasing state. The coreleasing neurons and terminals remain in the dorsal horn, whereas many ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sadullah Bahar ◽  
Durmus Bolat ◽  
Muhammet Lutfi Selcuk

Although the cervical spinal cord (CSC) of the horse has particular importance in diseases of CNS, there is very little information about its segmental morphometry. The objective of the present study was to determine the morphometric features of the CSC segments in the horse and possible relationships among the morphometric features. The segmented CSC from five mature animals was used. Length, weight, diameter, and volume measurements of the segments were performed macroscopically. Lengths and diameters of segments were measured histologically, and area and volume measurements were performed using stereological methods. The length, weight, and volume of the CSC were61.6±3.2 cm,107.2±10.4 g, and95.5±8.3 cm3, respectively. The length of the segments was increased fromC1toC3, while it decreased fromC3toC8. The gross section (GS), white matter (WM), grey matter (GM), dorsal horn (DH), and ventral horn (VH) had the largest cross-section areas atC8. The highest volume was found for the total segment and WM atC4, GM, DH, and VH atC7, and the central canal (CC) atC3. The data obtained not only contribute to the knowledge of the normal anatomy of the CSC but may also provide reference data for veterinary pathologists and clinicians.


2009 ◽  
Vol 57 (5) ◽  
pp. 405-423 ◽  
Author(s):  
Iris Kulbatski ◽  
Charles H. Tator

This study characterized the differentiation of neural stem/precursor cells (NSPCs) isolated from different levels of the spinal cord (cervical vs lumbar cord) and different regions along the neuraxis (brain vs cervical spinal cord) of adult male Wistar enhanced green fluorescent protein rats. The differentiation of cervical spinal cord NSPCs was further examined after variation of time in culture, addition of growth factors, and changes in cell matrix and serum concentration. Brain NSPCs did not differ from cervical cord NSPCs in the percentages of neurons, astrocytes, or oligodendrocytes but produced 26.9% less radial glia. Lumbar cord NSPCs produced 30.8% fewer radial glia and 6.9% more neurons compared with cervical cord NSPCs. Spinal cord NSPC differentiation was amenable to manipulation by growth factors and changes in in vitro conditions. This is the first study to directly compare the effect of growth factors, culturing time, serum concentration, and cell matrix on rat spinal cord NSPCs isolated, propagated, and differentiated under identical conditions. (J Histochem Cytochem 57:405–423, 2009)


Author(s):  
Chigusa Shimizu-Okabe ◽  
Shiori Kobayashi ◽  
Jeongtae Kim ◽  
Yoshinori Kosaka ◽  
Masanobu Sunagawa ◽  
...  

Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine co-releasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play key roles in the regulation of pain, locomotive movement, and respiratory rhythms. Herein, we first describe GABAergic and glycinergic transmission and inhibitory networks, which consist of three types of terminals, in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many of GABAergic neurons convert to co-releasing state. The co-releasing neurons and terminals remain in the dorsal horn, whereas many of co-releasing ones ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.


Sign in / Sign up

Export Citation Format

Share Document